We have explored the synthesis and characterization of three new alternating copolymers containing fluorene and a dually-dopable benzimidazole moiety. Poly(2-n-heptyl-benzimidazole-alt-9,9-di-n-octylfluorene) (PBIF), poly(2-n-heptyl-benzimidazole-vinylene-9,9-di-n-octylfluorene) (PBIF-VL), and poly(2-n-heptyl-benzimidazole-ethynylene-9,9-di-n-octylfluorene) (PBIF-EL) were synthesized from Suzuki, Heck, and Sonogashira cross-coupling reactions in reasonable yield. The materials were characterized through ultraviolet-visible (UV-vis) spectroscopy, photoluminescence (PL), and cyclic voltammetry (CV). The vinyl and ethynyl bridges in PBIF-VL and PBIF-EL were incorporated to separate benzimidazole and fluorene units while retaining conjugation. This allowed us to differentiate between steric and electronic contributions to the band gap (E_g) changes that occur upon acid/base doping of these materials. We demonstrate that the blue shift arising from acid doping PBIF is due to steric torsion while the red shift found upon base doping PBIF is due to both steric modifications and possibly an electronic effect. These findings are supported through the use of molecular modeling. This work is supported by the National Science Foundation (CHE-1213072) as well as the National Science Foundation Graduate Research Fellowship Program (GRFP-451512). (last edited June 6, 2015)