Self-Diffusion of Polystyrene in a CO₂-Swollen Polystyrene Matrix: A Real Time Study Using Neutron Reflectivity

Ravi R. Gupta,† Kristopher A. Lavery,† Timothy J. Francis,‡ John R. P. Webster,§ Gregory S. Smith,†,‡ Thomas P. Russell,‡ and James J. Watkins*,†

Department of Chemical Engineering and Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003; ISIS, Rutherford Appleton Laboratory, Didcot, Oxon, OX11 QX, U.K.; and LANSCE, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Received July 29, 2002

ABSTRACT: The self-diffusivities of high molecular weight polystyrene chains in CO₂-swollen polystyrene matrices were measured in real time using neutron reflectivity. Bilayer films of hydrogenated and deuterated polystyrene (PS) were prepared on silicon substrates and exposed to compressed CO₂. The broadening of the interface between the films as a function of time was determined from the reflectivity profiles, yielding the chain diffusivity. Diffusivity was studied as a function of polymer molecular weight, concentration of CO₂ in the polymer film, and temperature. Nearly an order of magnitude enhancement in the diffusivity of polystyrene chains (M = 2 × 10⁵), from 1.62 × 10⁻⁶ to 9.35 × 10⁻⁴ cm²/s, was found with a modest increase in the concentration of CO₂ in the polystyrene (from 8.9 to 11.3 wt %) at 62 °C. This concentration dependence was modeled using the Vrentas–Duda free volume theory. At a constant temperature and CO₂ pressure the polystyrene diffusivity scaled as M⁻¹. The scaling of the self-diffusivity of PS in CO₂-swollen PS with T − Tg, where Tg is the glass transition temperature depressed by the presence of the solvent, is discussed.

Introduction

Supercritical fluids (SCF’s) such as CO₂ are effective plasticizing agents for most polymers and upon sorption provide a “solventless” route for polymer modification and processing. Although the thermodynamics of block copolymer (BCP) ordering in SCF’s has prompted extensive research recently, there have been few attempts to understand the dynamics of polymer chains in the presence of CO₂. Recently, RamachandraRao et al. showed that CO₂ enhances the ordering kinetics in high molecular weight BCP’s such as P(S-b-MMA), producing structures that are difficult or impossible to achieve by thermal annealing. In the melt, ordering is impeded by slow kinetics due to the high degree of entanglement and the microphase separation of the copolymer. Chain mobility is also an important consideration in the reactive blending of two or more immiscible polymers. In reactive blending, end-functionalyzed polymer chains diffuse through the respective bulk phases to the interface and react, forming a block copolymer that imparts long-term stability to the blend. The slow dynamics of chains in a high molecular weight polymer matrix causes the reaction to be diffusion-controlled. CO₂ can be used to increase the mobility of the chains, thereby enhancing the kinetics. Recently, Roberts et al. studied the reaction kinetics of the solid-state polymerization of poly(bisphenol A carbonate) swollen with CO₂ and ascribed the observed enhancement in polymerization rate to increased end-group mobility in the plasticized polymer.

The diffusion of polymers, both in the melt and in solution, has been widely studied. In the high molecular weight regime (M > Mₐ), where Mₐ is the entanglement molecular weight) the reptation model, proposed by de Gennes and later modified by Doi and Edwards, captures the basic physics of polymer dynamics. The theory predicts that the viscosity and diffusion coefficient of polymer chains scale with M⁵ and M⁻², respectively, for times longer than the characteristic time for a polymer chain to diffuse a distance equivalent to its contour length (the reptation time). This model predicts five distinct time regimes for the mean-square displacement of the chain segment (g(t)). For times shorter than the reptation time g(t) ∝ t⁵. At times longer than reptation time, the random walk result is recovered with g(t) ∝ t. Over the past two decades, numerous studies have been performed to test this model. Using IR microdensitometry, Klein showed that for high molecular weights polyethylene diffusivity scaled as the inverse square of the molecular weight. Using Rutherford backscattering and forward recoil spectrometry, Green et al. studied the entanglement distance predicted from reptation theory. Russell et al. used dynamic secondary-ion mass spectrometry (DSIMS) to demonstrate that polystyrene chains diffuse across the interface in a curvilinear motion, which supports the tenets of reptation.

10.1021/ma021215r CCC: $25.00 © 2003 American Chemical Society
Published on Web 12/28/2002
self-diffusivity and tracer diffusivity of polystyrene at 174 and 171 °C, respectively. The molecular weight of the polystyrene chains ranged from 33 000 to 943 000 g/mol. Their results indicate polystyrene diffusivity scales as $M^{1.7}$ near exact agreement with reptation arguments where $D_s \sim M^{1.8}$, which contains resolution in k_1 whereas $D_s \sim M^{2.3}$ at long annealing times consistent with the scaling of viscoelasticity in polymer solutions and melts.37,38

Various techniques have been used to measure dynamics in polymer systems. Neutron reflectivity (NR), with a depth resolution of ~1 nm, offers a number of advantages for measuring a wide variety of interfacial phenomena including diffusion of polymer chains.39 Recently, Bucknall et al. conducted real time NR measurements of polystyrene diffusion at 115 °C, at ambient pressure.40 The interfacial width between layers of deuterated polystyrene (DPS) and hydrogenated polystyrene (HPS) bilayer exhibited a time dependence of $t^{1/2}$ at initial stages to $t^{1/2}$ at long annealing times consistent with the reptation.25,41 The same study showed highly asymmetric interfacial profiles for the diffusion of oligomeric styrene into high MW polystyrene at 65 °C.

Here the chain mobility in PS films dilated with CO$_2$ is described. Real time measurements are required for the accurate measurement of chain diffusivity in CO$_2$-swollen polymer films, since stopped time measurements require the depressurization of the sample after annealing. This can lead to a cavitation of the polymer and to a distortion of the interface between the polymer layers, causing erroneous results.

Experimental Section

Narrow molecular weight distribution PS samples were purchased from National Wafers Service Inc., Portola Valley, CA, and were cut into 2 in. x 2 in. squares. Deuterated PS (DPS) and hydrogenated PS (HPS) films were spin-coated from toluene solution onto cleaned silicon wafers (with the native oxide) and onto deaned glass slides, respectively. Film thickness was measured using optical ellipsometry (Rudolph AutoEI 2). DPS films on silicon wafers were subsequently annealed in a vacuum oven at 160 °C for 16–20 h to relax stresses developed during the spin-coating process. A bilayer film was prepared by floating the HPS film onto a pool of deionized water and transferring it on top of the DPS film. The bilayer was dried under vacuum at 65 °C for 4–5 h to remove water from the interface.

Neutron reflectivity experiments were performed using a custom-built high-pressure cell (Figure 1) consisting of two stainless steel flanges bolted together and sealed with a Teflon O-ring. The cell accommodates the bilayer samples on 2 in. x 2 in. silicon wafers. The neutron beam is transmitted through a series of sapphire windows (1.6 in. diameter and 0.6 in. thick) and small quartz spacers. The spacers are used to reduce the scattering of the neutron beam by the compressed fluid. The cell is heated with cartridge heaters and is insulated by a Garolite box. High-pressure CO$_2$ is supplied through a computer-controlled syringe pump (ISCO Products Inc.). The pressure of the system within the sample chamber is measured directly. The sapphire windows are secured to the main cell body by two threaded stainless steel end-caps and sealed with Teflon O-rings. Experiments were performed from 62 to 85 °C at CO$_2$ fluid pressures up to 125 bar. Both the SURF reflectometer at ISIS, Rutherford Appleton Laboratory, UK, and the SPEAR reflectometer at LANSCE, Los Alamos National Laboratory, NM, were used in this study. NR data were collected on SURF from $k = 0.0075$ to 0.0235 Å$^{-1}$, whereas the data collected at SPEAR covered a k range from 0.005 to 0.0325 Å$^{-1}$ ($k = (2\pi/\lambda) \sin(\theta)$, where λ is the wavelength and θ is the grazing angle of incidence). On both instruments the data acquisition time ranged from 3 to 5 min per reflectivity curve. Because of the presence of high-pressure windows and CO$_2$, there was a wavelength-dependent attenuation of the neutrons that was taken into account by the measurement of the neutron spectrum with and without a CO$_2$-filled cell. The reflectivity curves were fit to a bilayer model using an error function to define the root-mean-square (rms) roughness between the HPS and DPS layers. The error function representation of the interfacial roughness is justified because in all the experiments the total thickness of the bilayer films was ~200 Å, which is much more than an order of magnitude larger than the maximum rms roughness observed between the polymer layers (~130 Å). Interfacial width was then calculated on the basis of the rms roughness (see Results and Discussion).42,43 By design, fitting the reflectivity profiles required fitting only three parameters: the rms roughness between the polymer layers and $\Delta k \alpha k$, which contains resolution in λ (λ / λ) and θ ($2\pi/\lambda \theta$).

Results and Discussion

A typical set of in situ, real time reflectivity profiles is shown in Figure 2. The example is data from a bilayer film of PS (200K) at 62 °C and 83 bar of CO$_2$ pressure.

Table 1. Weight-Average Molecular Weights (M_w) and Polydispersities of DPS and HPS Samples Used in This Study

<table>
<thead>
<tr>
<th>Sample</th>
<th>M_w (g/mol)</th>
<th>M_w/M_n</th>
<th>Sample</th>
<th>M_w (g/mol)</th>
<th>M_w/M_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPS-100K</td>
<td>102 000</td>
<td>1.04</td>
<td>DPS-300K</td>
<td>293 000</td>
<td>1.04</td>
</tr>
<tr>
<td>DPS-100K</td>
<td>110 500</td>
<td>1.03</td>
<td>DPS-300K</td>
<td>333 900</td>
<td>1.05</td>
</tr>
<tr>
<td>HPS-200K</td>
<td>228 000</td>
<td>1.05</td>
<td>HPS-600K</td>
<td>620 800</td>
<td>1.02</td>
</tr>
<tr>
<td>DPS-200K</td>
<td>211 700</td>
<td>1.04</td>
<td>DPS-600K</td>
<td>577 000</td>
<td>1.04</td>
</tr>
</tbody>
</table>

Figure 1. Schematic of the high-pressure neutron reflectivity cell.
Upon sorption of CO$_2$, the critical edge of the PS film shifts from $k = 0.0089$ Å$^{-1}$ at 62 °C and ambient pressure to $k = 0.0082$ Å$^{-1}$ at 62 °C and 83 bar. The film thickness increases by 12% upon CO$_2$ sorption.

Reflectivity profiles were also obtained, in real time, for a 100 nm thick DPS film on silicon substrate upon sorption of CO$_2$ under similar conditions. Profiles, acquired every 4 min, showed no changes over a period of 2 h, indicating that the PS–CO$_2$ system reached equilibrium very rapidly. It is assumed that there were no specific interactions between CO$_2$ and PS chains. Consequently, the diffusivities measured are essentially the self-diffusivities of the chain.

The data in Figure 2 show that the amplitudes of the fringes decay with time as a result of interfacial broadening. The evolution of the concentration profiles used to fit these data is shown in Figure 3. For times in excess of the reptation time, the interfacial width should increase linearly with time. Figure 4 shows the time dependence of the square of the interfacial width, which satisfies this prediction. Interfacial widths (a_i^2) are computed from the rms roughness (σ), between the layers, via $a_i^2 = \sqrt{2\pi\sigma}$. The rms roughness at a time t was corrected quadratically for the initial rms roughness that arose from the sample preparation technique. Since experiments were performed at times greater than the reptation time, distinguishing between reptation or any other mode of diffusion was not possible.

The self-diffusivity of the PS chain can be directly computed from the slope of the line in Figure 4. The square of the interfacial width is related to the annealing time (at long times) via

$$a_i^2 = 4D_{S}t \quad (1)$$

where a_i is the interfacial width between the polymer layers, t is the time, and D_{S} is the self-diffusivity of PS chains, which is dependent solely on the slope of the line in Figure 4. Data acquisition was started after the pressure at a particular temperature stabilized to a final value. We denote the onset of the data collection as $t = 0$. During the period of equilibration, prior to $t = 0$, the interface broadened to a finite width. Therefore, eq 1 is not forced through the origin in Figure 4 as at time zero there is a finite interfacial width between the polymer layers. The self-diffusivity of PS chains (200K) for the conditions described above was found to be 2.19×10^{-16} cm2/s using the slope of the data in Figure 4.

A. Molecular Weight Dependence. Four different PS molecular weights (Table 1), covering approximately half a decade, were used to obtain the molecular weight dependence of self-diffusivity. Experiments were conducted at $T = 62$ °C and $P_{CO_2} = 90$ bar, hence at constant CO$_2$ concentration in PS. A plot of D_{S} as a function of molecular weight is shown in Figure 5, yielding an exponent of -2.38. This is in agreement with data for PS diffusivities in concentrated solutions of organic solvents and shows a stronger dependence on molecular weight than that seen in the melt or
predicted by the reptation model. It is well established that the viscosity and the associated relaxation time, for molten polymers and concentrated polymer solutions, vary as $M^{-2.4}$. If the diffusivity and the viscosity are “intimately related” and, therefore, characterized by the same relaxation time, then the self-diffusivity at times longer than the characteristic relaxation time should vary as $M^{-2.4}$. The disagreement of the exponent with the reptation theory, where an exponent of 2 is predicted, can be resolved if restrictions of the theory are relaxed.34,37

The ratio of $D_s(M,T,C)$ to $D_s(10M_eT,C)$ was plotted as a function of M/M_e in Figure 6. Here, $D_s(10M_eT,C)$ is the self-diffusivity of PS chains at the same temperature and solvent concentration but at a molecular weight 10 times that of the entanglement value. Following the recipe of Lodge et al.,37,38 reducing the variables in this manner elucidates the dependence of self-diffusivity on molecular weight explicitly, as there is no contribution from the friction factor (assuming its dependence on M is small at $M \gg M_0$ (see section C)). To check for universality in the molecular weight exponent ($M > M_0$) of polymer self-diffusivity, in melts and solutions, Figure 6 compares data from this study with the data for molten PS16 and in concentrated solutions of PS in dibutyl phthalate (DBP).24 The value of $D_s(10M_eT,C)$ at 10M_e for each data set was obtained by interpolating the data. A best-fit line through the composite data set yields an exponent of -2.26, very close to the published value of $-2.28.37,38$ Using only the data obtained in this study, an exponent of -2.38 was found.

It is important to note that the entanglement molecular weight for the PS--CO_2 system was calculated using the empirical equation for concentrated PS solutions.45

$$M_e = 1.8 \times 10^4 c^{-1}$$ (2)

where c is the polymer concentration in g/cm3. The polymer concentration in our case was calculated using the Sanchez–Lacombe equation of state (S–L EOS) with interaction parameters obtained by fitting the experimentally determined sorption isotherms. In this study we use CO_2 sorption data in PS recently measured at 65 °C and pressures between 61 and 102 bar, above the glass transition pressure of the system, using high-pressure neutron reflectivity.36

Table 2. Vrentas–Duda Free Volume Parameters

<table>
<thead>
<tr>
<th></th>
<th>PS monomer repeat unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_i^r, cm3/g</td>
<td>0.589</td>
</tr>
<tr>
<td>V_i^l, cm3/g</td>
<td>0.25</td>
</tr>
</tbody>
</table>

B. Concentration Dependence

Free volume is an important parameter in determining the rate of molecular motion in polymer systems.44 The concept of free volume is based on Cohen–Turnbull theory, which relates the molecular mobility in hard sphere liquids to the free volume of the system.47,48 Here, a molecule jumps into a void created due to nonenergetic redistribution of the free volume when such a void reaches a critical size. Fujita applied this concept to predict mobility in polymer–diluent systems.49 Subsequently, Vrentas and Duda derived a more robust free-volume-based model that describes the diffusivity of diluents and polymer chains in polymer mixtures over a wide range of concentrations and temperatures.50–52 According to this model, the diffusivity of polymer chains in a binary mixture with a solvent is given by

$$D_s = D_{0S} \exp \left(-\gamma \frac{(w_1 V_1^r + w_2 V_2^r) \xi}{V_{FH}^r} \right)$$ (3)

where D_s is the self-diffusivity of polymer; D_{0S} is the preexponential factor, which incorporates the effect of temperature; w_i and V_i^r are the weight fraction and the critical hole free volume per gram for the displacement of the ith jumping segment. V_{FH} is the average hole free volume per gram of the mixture. If the volume change on mixing is assumed to be small, V_{FH} can be obtained by adding the free volume of the respective components of the mixture weighted over the weight fractions of the individual components. γ is the overlap factor signifying that more than one jumping unit can occupy a site. ξ is the ratio of the jumping units of the solvent and polymer segments and is given by

$$\xi = \frac{V_1^{(0)} M_1}{V_2^{(0)} M_j}$$ (4)

where M_1 and M_j are the molecular weights of the jumping units of the solvent and polymer, and $V_i^{(0)}$ is the specific occupied volume of the ith component at 0 K. All parameters except D_{0S} and ξ were obtained from the literature. The methodology for calculating the parameters is shown in the Appendix, and the results are given in Table 2A. The Vrentas–Duda free volume theory describes the self-diffusivity of the PS chains in CO_2-swollen polystyrene remarkably well over the concentration range studied (Figure 7). The two parameters D_{0S} and ξ were used to fit the self-diffusivity–concentration data to the model. The data in Figure 7 were obtained for PS(200K) at 62 °C and CO_2 pressure range of 76–104 bar. The fitting parameters are listed in Table 2B. The value of $\xi = 0.233$ is in reasonable agreement with others.53 If it is assumed that the CO_2 diffuses as a whole molecule, the jumping unit for the
PS segment calculated using eq 4 is 1.25 times the monomer molecular weight (104 g/mol). The specific occupied volumes for CO2 and the PS jumping segment at 0 K were assumed to be equal to their van der Waals volume at 0 K (see Appendix). The parameters used in this study were found to yield accurate description of the probe diffusion in CO2-dilated matrices using the Vrentas–Duda equation.54

As shown in Figure 7, diffusivity increases by nearly an order of magnitude, from 1.62×10^{-16} to 9.35×10^{-16} cm2/s, upon modest increase in the concentration of CO2 in the polystyrene matrix from 8.9 to 11.3 wt % at 62 °C. At 62 °C and a solvent loading of 8.9%, the PS–CO2 system is ~ 28 °C above the glass transition temperature. Using the parameters obtained in this study, the Vrentas–Duda model (eq 3) can be used to predict the diffusivity of PS over a range of solvent loadings. For example, at $T = 62$ °C and $P_{CO2} = 40$ bar, PS diffusivity is predicted to be 2.3×10^{-18} cm2/s. At these conditions, the PS–CO2 system is ~ 5 °C above the ambient pressure glass transition temperature (see section C).

C. Temperature Dependence. The diffusivity of a polymer chain can be described by

$$D_s = g(c, M) f^{-1}(\zeta(c, M, T))$$

The function g incorporates topological effects and is dependent on M and C. It characterizes the effect of entanglement on the chain mobility. The temperature dependence of diffusivity is embedded in the friction coefficient, f. The effect of molecular weight on the friction coefficient is negligible for high molecular weight polymers,44 but f is strongly dependent on the concentration. To elucidate the effect of temperature on the friction coefficient, it is useful to plot the reduced diffusivity, $D_s M^a/T$ vs T or $T - T_g$, where a is the exponent for the molecular weight dependence of the diffusivity (see section A).17 It is well-known that sorption of CO2 in polymers leads to depressions in the glass transition temperature.55 At a given temperature (T) and CO2 pressure the system will possess a unique glass transition temperature (T_g). Therefore, the polymer–CO2 system at a particular T and C can be mapped onto an equivalent $T - T_g$ scale.56 This implies that the polymer solution can be treated as a melt at a temperature of $T - T_g$ above the glass transition temperature of the pure polymer. The scaled self-diffusivity was plotted with respect to $T - T_g$ in Figure 8. CO2 concentrations at a particular temperature and fluid pressure were calculated as described in section A. The glass transition temperature was calculated from Chou's model57

$$\ln \left(\frac{T_g}{T_g(w_d=0)} \right) = \beta [(1 - \theta) \ln(1 - \theta) + \theta \ln(\theta)]$$

$$\theta = \alpha \left[\frac{w_d}{1 - w_d} \right]$$

where w_d is the weight fraction of the CO2 in the polystyrene matrix; β and α are system-dependent constants. The values of the latter parameters ($\beta = 0.635$ and $\alpha = 0.972$) were obtained from the literature.58,59 Results obtained in this study were compared with data for PS diffusivity in the melt phase obtained using other techniques.17,40,43,60,61 The molecular weight exponent used in all the cases was 2.26, as shown in section A. Most of the data obtained in this study are slightly lower than the data in the melt phase, suggesting that the friction coefficient is slightly higher in PS–CO2 than in the melt. This is counterintuitive and may suggest that the concentration dependence of the friction coefficient does not scale with $T - T_g$ alone. However, it is important to note that there is some uncertainty in the calculation of the depression in T_g due to CO2 sorption.

The data in Figure 8 can also be correlated using free-volume-based model relating D_s to $T - T_g$. The free-volume-based Vogel equation describes the viscoelastic properties of polymer melts and solutions and is given by

$$\ln \left(\frac{D_s M^a}{T} \right) = A - \frac{B}{T - T_w}$$

where A, B, and T_w are empirical parameters that are usually obtained by fitting the experimental data. B was fixed at a value of 780.34 In Figure 8 the dashed curve is the Vogel equation fit to all the experimental data over a $T - T_g$ range of 15–100 °C. Deviations above 80 °C between the fit and the data are not surprising due to the inability of the free-volume-based models to describe dynamics at temperatures far removed from the glass transition temperature.44 The values of the

Figure 7. Variation of PS self-diffusivity with CO2 concentration in the PS matrix. The solid line is from the Vrentas–Duda free volume model. Concentration in weight percent ranges from 8.9% to 11.3%.

Figure 8. Scaled diffusivity vs $T - T_g$: data from this study (●), data from Green et al. (△), data from Chang et al. (○), data from Karim et al. (×), data from Whitlow et al. (●), data from Steiner et al. (○). The solid and the dashed lines are the best fits of the Vogel equation to our data set and to all the data, respectively.
fitting parameters are compared with the literature values in Table 3. The solid line in Figure 8, with slightly different set of parameters (Table 3), is fit to the data obtained in this study.

Assuming Arrhenius behavior, an apparent activation energy \(E_{\text{ac}} \) of 140 kJ/mol was evaluated for PS self-diffusivity (600K) in CO\(_2\)-swollen PS matrix at a constant volume fraction of 0.074 from 62 to 85 \(^\circ\)C. In the melt Green et al., determined activation energies of 226 and 254 kJ/mol for molecular weights of 55 000 and 110 000 g/mol, respectively (Figure 9).\(^{17}\) Since the apparent activation energy is usually a function of temperature, it is meaningful to compare the values over a similar \(T - T_g \) range. The \(T - T_g \) in Figure 9 ranges from 30 to 60 \(^\circ\)C. The disparity of 85-110 kJ/mol in the apparent activation energy for PS chains in PS-CO\(_2\) compared to the PS melt can be rationalized in terms of the lower segmental friction and higher probability for critical void formation in the presence of the CO\(_2\).

The above arguments point to the inability of scaling to completely account for the concentration dependence of the friction factor.

Conclusion

The self-diffusivity of PS chains in a CO\(_2\)-swollen PS matrix was studied as a function of temperature, CO\(_2\) concentration, and molecular weight. Real time experiments were performed in situ, using high-pressure NR. The study indicates a scaling of the self-diffusivity \(D_s \sim M^{-0.238} \), which is in good agreement with that obtained in organic solvents. The molecular weight scaling of self-diffusivity in systems ranging from polymer-organic solvents to polymer-CO\(_2\) provides confidence in the universality of the exponent. The measurements demonstrate nearly an order of magnitude increase in the diffusivity upon increase of the sorbed volume fraction of CO\(_2\) from 8.9 to 11.3 wt \% at 62 \(^\circ\)C. The self-diffusivity of PS at 62 \(^\circ\)C and 40 bar predicted using Vrentas-Duda free volume model indicates that CO\(_2\) is an effective plasticizing fluid. The diffusivity increases by about 2 orders of magnitude upon sorption of CO\(_2\) at 62 \(^\circ\)C and 77 bar in comparison to 62 \(^\circ\)C and 40 bar, conditions at which the PS-CO\(_2\) system is \(\sim 5 \) \(^\circ\)C above the glass transition temperature of PS at ambient pressure. The range of diffusivities studied varied by nearly 2 orders of magnitude from 2.7 \(\times \) \(10^{-17} \) to 2 \(\times \) \(10^{-15} \) cm\(^2\)/s. To extend the study to measure higher diffusivities in PS-CO\(_2\) systems, other techniques such as fluorescence nonradiative energy transfer or forced Rayleigh scattering technique will be required.

Acknowledgment. The authors acknowledge the NSF Materials Research Science and Engineering Center at University of Massachusetts Amherst for providing the financial support. The authors are greatly indebted to Dr. Stephen Holt, the staff at the SURF reflectometer, ISIS, and the staff at the SPEAR reflectometer, LANSCSE, for providing support and helpful suggestions during the course of the experiments. The authors also acknowledge Dr. A. Taylor, Director of ISIS, for providing discretionary time to establish the feasibility of these measurements.

Appendix

The following assumptions are made in order to calculate the free volume parameters for CO\(_2\) and the monomer repeat unit of PS: (a) The hole free volume and the interstitial volume vary linearly with temperature. (b) The hole free volume for the mixture can be obtained by adding the hole free volumes of the pure component weighted over the respective weight fractions in the mixture. (c) The hole free volume thermal expansion coefficient is independent of temperature. (d) The critical hole free volume \(V_H^\text{c} \) is equal to the van der Waals volume at 0 K.

A detailed recipe for free volume parameter evaluation can be obtained from other sources.\(^{62}\) In the case of CO\(_2\) the critical hole free volume \(V_H^\text{c} = 0.589 \text{ cm}^3/\text{g} \) was obtained from the literature.\(^{53}\) The hole free volume thermal expansion coefficient for CO\(_2\) is calculated from the known solid and liquid densities at the triple point of CO\(_2\) and the van der Waals volume of CO\(_2\) at 0 K.\(^{62}\)

The value comes out to be 8.76 \(\times \) \(10^{-4} \) cm\(^3\)/(g K). The value of the hole free volume for CO\(_2\) at 62 \(^\circ\)C is calculated using the equation

\[
V_H^{\text{c,CO}_2}(T) = V_H^{\text{c,CO}_2}(40 {^\circ\text{C}}) + 8.76 \times 10^{-4}(T - 40) \quad (9)
\]

where the \(V_H^{\text{c,CO}_2}(40 {^\circ\text{C}}) = 0.231 \text{ cm}^3/\text{g} \) is obtained from Alsoly et al.\(^{53}\) The value for \(V_H^{\text{c}}(62 {^\circ\text{C}}) \) comes out to be 0.25 cm\(^3\)/g. The overlap factor \(\gamma \) is assumed to be equal to 1.0.

Similarly, in the case of PS monomer repeat unit the critical hole free volume \(V_H^{\text{c,PS,repeatunit}} = 0.85 \text{ cm}^3/\text{g} \) is obtained from the literature.\(^{53}\) The thermal expansion coefficient for the hole free volume is calculated assuming a universal value of 0.025 for the free volume fraction at the glass transition temperature. The value is calculated to be 6.54 \(\times \) \(10^{-5} \) cm\(^3\)/(g K). The hole free volume for the PS repeat unit at 62 \(^\circ\)C is calculated using an equation similar to (9), and \(V_H^{\text{c,PS,repeatunit}}(40 {^\circ\text{C}}) = 0.0225 \text{ g/cm}^3 \), obtained from Alsoly et al.\(^{53}\) The overlap factor was assigned a value of 1.0. The value for the hole free volume for the PS repeat unit at 62 \(^\circ\)C comes out to be 0.0239 g/cm\(^3\).
Finally, the average hole free volume fraction for the mixture per gram is calculated using the following equation:

\[
\tilde{V}_{FH}(62 ^\circ C) = w_1 V_{CO_2}^H(62 ^\circ C) + w_2 V_{PS,repeat unit}^H(62 ^\circ C)
\]

(10)

References and Notes

