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A multiscale, hybrid computational framework for the deposition of films within porous
substrates, is developed and applied to a prototype deposition reaction in the opposed
reactant flow geometry. The developed model captures transport of reactants through the
pores, homogeneous reaction of reagents producing an intermediate species, nucleation,
and growth of the film as a moving boundary problem. The pore evolution is described
using a capillary model. Adaptive mesh refinement is used to resolve length scales varying
from nanometers to one millimeter. Nucleation is treated stochastically at the finest level,
whereas transport and reaction at coarser levels are treated deterministically. Transport
parameters chosen for these simulations correspond to the deposition of Pd films in
porous alumina under supercritical CO2 conditions. The numerical results provide insight
into the strategies that could be used to control their thickness, including confining thin
films within substrates. For example, it has been found that the location of the deposit
within the porous substrate is essentially determined by the relative concentrations of
reagents on either side of the porous substrate, and the startup of the process. In addition,
it is shown that the interplay of nucleation and growth kinetics determines the morphology
and roughness of the deposit at short time scales. © 2004 American Institute of Chemical
Engineers AIChE J, 50: 684–695, 2004
Keywords: crystal growth, multiscale modeling, materials, nucleation, mathematical
modeling

Introduction

Thin films are used in numerous applications that involve
optics, catalysts, coatings, microelectronics, sensors, and mem-
brane reactors. Control of film thickness, surface microstruc-
ture, and morphology is crucial to meet the requirements of
advanced materials. Several techniques have been developed to
fabricate thin films under varying environments and operating
conditions, such as sputtering, electroless deposition, chemical
vapor deposition (CVD), and supercritical fluid deposition
(SFD). Manufacturing reproducible, defect-free films with a

controlled microstructure at low cost still remains a challenge.
To achieve the above goals, a fundamental understanding of
the deposition process and optimization of the operating con-
ditions is imperative. Hence, considerable effort has been di-
rected towards the modeling of the CVD process (Lin and
Burggraaf, 1991; Ofori and Sotirchos, 1996; Sotirchos and
Zarkanitis, 1993; Tsapatsis and Gavalas, 1992, 1997; Xomeri-
takis and Lin, 1994b). Deposition within a porous media is in
many cases desirable in order to enhance adhesion, and also to
avoid peel off, and minimize or effectively dissipate stresses to
the support, induced, for example, in the case of hydrogen
diffusion through a Pd film.

Experimental and numerical studies have been conducted on
the deposition of inorganic and organic thin films within porous
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media by reactants flowing from opposite sides of a porous
medium (Tsapatsis and Gavalas, 1992, 1997; Xomeritakis and
Lin, 1994a, b, 1998). Theoretical models describing deposition,
which account for reaction-transport-pore evolution, are either
simple models solved semi-analytically (Xomeritakis and Lin,
1994b), or complex models solved numerically (Ofori and
Sotirchos, 1996; Sotirchos and Zarkanitis, 1993; Tsapatsis and
Gavalas, 1992, 1997). Lin and coworkers have developed con-
tinuum chemical vapor infiltration (CVI) and CVD models
using the dusty gas model for describing transport and the
quasi-steady-state assumption (Lin and Burggraaf, 1991;
Xomeritakis and Lin, 1994b). Tsapatsis and Gavalas assumed
a simple transport and random capillary model to numerically
investigate deposition of silica and alumina in porous Vycor
tubes by hydrolysis of SiCl4, and oxidation of the aluminum
precursor (Tsapatsis and Gavalas, 1992), respectively. Deco-
rated lattice models were used to subsequently describe pore
connectivity, and thus, identified that the deposited films were
relatively thinner, and were produced in less time (Tsapatsis
and Gavalas, 1997), compared to that previously reported in
Tsapatsis and Gavalas (1992). More recently, it was shown that
transients may strongly affect the deposit location under certain
conditions, and, therefore, the quasi-steady-state assumption
may break down (Gummalla et al., 2002).

Nucleation and growth are important aspects of film depo-
sition. However, in most previous work, nucleation has not
been explicitly considered. Conventionally, nucleation is mod-
eled at the continuum level through a Heaviside function,
classic nucleation theory, or Cahn-Hilliard based models (Dee,
1986; Girshick et al., 2000; Gummalla et al., 2003; Lebedeva
et al., 2004; Samseth et al., 1998) that usually link the nucle-
ation rate to the level of supersaturation. Aside from missing
the microscopic physics and stochastic effects, use of the
Heaviside function in the models can lead to results that depend
on the discretization of the governing equations when nucle-
ation is very fast, and a coarse mesh is used (Gummalla, 2002).
Furthermore, growth is itself a moving boundary (Stefan) prob-
lem, but diffusion-reaction models have not treated it as such.
Nucleation and growth initiate at the nanometer length scale
where thermal fluctuations are typically important and evolve
to considerably larger length scales. Currently, there are no
models that can resolve these issues. Here, a prototype multi-
scale, hybrid framework for deposition of thin films within
porous substrates is developed. The feasibility of the developed
framework to model deposition processes is presented, fol-
lowed by some parametric studies. The proposed model is
universally applicable to the deposition of films in porous
media; however, in this article the focus is on a specific
example of Pd films in alumina, formed by the reaction of H2

and P (�-2-methylallyl (cyclopentadienyl) palladium (II)) pre-
cursor, and we use relevant terminology.

Reaction Mechanism and Rates

A prototype reaction mechanism, consisting of three basic
steps, is assumed. The precursors H2 and P, present in dilute
amounts, are assumed to react in the fluid phase, within the
pores, producing an intermediate species I, through reaction R1

H2 � P 3 I � Byproducts �homogeneous reaction� �R1�

2I 3 M � 2L �nucleation� �R2�

I � H2O¡
M

M � L �heterogeneous growth� �R3�

The intermediate is envisaged as a molecule comprised of a
metal atom (M), linked with some organic ligands (L). When
the concentration of the intermediate is sufficiently high, the
probability of the formation of a stable nucleus through reac-
tion R2, is also high. On the basis of analysis of STM studies
on metal deposition at low temperatures, it is considered that
the dimer is the critical nucleus in this model (Brune, 1998).
Finally, each nucleus provides active sites for dissociation of
the intermediate species to form metal and organic ligands
through reaction R3.

Details of actual kinetics for many systems are not often
available. For this reason, prototype, simple powerlaw rate
expressions have been used with exponents reflecting the stoi-
chiometry of reaction R1. The rate of reaction R1 is taken as

r1 � K1CH2CP (1)

where K1 is the volumetric reaction rate constant, and Ci is the
molar concentration per unit pore volume of species i (i �
H2, P).

For the growth kinetics (reaction R3), the following expres-
sion is used for the growth rate

r3 � KHetCICH2

0.5 (2)

The reaction orders can be obtained in the zero coverage limit
of Langmuir-Hinshelwood kinetic regime (half-order kinetics
reflects dissociative adsorption of H2). Other kinetic expres-
sions are straightforward to incorporate in the multiscale
framework; however, it is left for future research. Aside from
the chemical reactions, transport of the chemical species within
the open pores, and within the growing nanocrystalline metal
deposit, must be considered.

Governing and Constitutive Equations of
Transport

The governing conservation equations for reaction and trans-
port are

��Ci�� � Hi��o � ����

�t
� � � � ji

f � ji
s� � �

j�1

2

vij�rj � vi3S�r3

i � H2, P, I, and j � R1, R2 (3)

Here, t is the time, � is the porosity of the medium (ratio of
void volume to total volume), �0 is the porosity at time t � 0,
Hi is the Henry’s equilibrium coefficient of species i in the
solid medium, rj is the rate of jth reaction, and vij is the
stoichiometric coefficient of species i in reaction j. The stoi-
chiometric coefficient is assumed to be positive for products,
and negative for reactants. In addition, ji

s and ji
f are the fluxes

of the ith species in the deposit and the fluid phase, respectively.
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S� is the surface area per unit volume of the substrate. Trans-
port of H2 occurs through the gas phase, as well as by disso-
lution and diffusion through the metal. The diffusion of all
species through the substrate is neglected due to its low value.

Transport of reactants through the open pores

Multicomponent mass transport in porous media is often
modeled using the dusty gas model (DGM), the mean-trans-
port-pore model (MTPM), or the binary friction model (BFM)
(Kerkhof, 1996, 2001; Mason and Malinauskas, 1983; Novak
et al., 1988). These models were derived from the Stefan-
Maxwell’s description of multicomponent transport in pores,
and Darcy’s equation for permeation. Depending on the struc-
ture of the porous medium, bulk diffusion, Knudsen diffusion,
and/or convection can be relevant. For highly diluted reactant
systems at isothermal and isobaric conditions, the DGM model
simplifies (Sloot et al., 1992) to the following approximate
expression

ji
f � �

Di�

�
� �Ci (4)

Here, � is the tortuosity of the porous medium, and Di is the
average diffusivity of species i. When the pores are sufficiently
large, Di is the ordinary molecular diffusivity. Assuming ki-
netic theory of ideal gases under supercritical pressures, the
mean free path for hydrogen is �3 nm. Therefore, Knudsen
diffusion is considered unimportant in the present calculations
because of primary interest in short times.

The molecular diffusion coefficients used in the present
simulations are taken from experiments (Fernandes et al.,
2001), based on the method of Fuller et al. (1966) with a
high-pressure correction obtained from a correlation by Taka-
hashi et al. described in Reid et al. (1987). Theoretical calcu-
lations for Di based on Hongqin and Ruckenstein, (1997), were
performed in some cases, and good comparison with the ex-
perimental data (Fernandes et al., 2001) was found.

Transport of H2 through the metal

H2 and few other gases diffuse through metals (Troiano,
1973; Ward and Dao, 1999). Hydrogen permeation includes
external mass transfer, (dissociative) surface adsorption, tran-
sition from the surface to the bulk metal, diffusion within the
bulk metal, transition from the bulk metal to the surface, and
(associative) surface desorption. Transport through the metal
could occur along grain boundaries, or through the polycrys-
talline metal itself. The latter is an order of magnitude slower
than the former (Kirchheim et al., 1988).

Assuming thermodynamic equilibrium and Fick’s first law,
the mass diffusion fluxes through the solid are

jH2

s � �
DH2,M��o � ��

�
� ��HH2CH2�, jP

s � 0, and jI
s � 0 (5)

where H is the partition coefficient. For the majority of the
simulations and chosen parameters in our studies, this diffusion
mechanism does not play a significant role.

Nucleation and Growth

Theoretically, Ratsch et al. (2000) have recently discussed
deterministic, random, and probabilistic methods for modeling
nucleation. In the deterministic model, a nucleus is seeded at
the location where the concentration of the intermediate is
above a predetermined value. This is similar to using the
conventional Heaviside function (Lebedeva et al., 2004; Sam-
seth et al., 1998) in continuum models. In the random nucle-
ation model, the nucleus emerges at any location at random,
independent of the spatial distribution of the intermediate. In
the probabilistic nucleation model, the position where the nu-
cleus forms is weighted by the local squared concentration of
the intermediate CI

2. It has been found that the size distribution
of the clusters obtained from the probabilistic nucleation model
was in excellent agreement with kinetic Monte Carlo simula-
tions, as well as with experimental data.

For irreversible nucleation on a surface lattice with a dimer
as the critical nucleus, the rate of nucleation is (Bales and
Chrzan, 1994)

Rnuc,het � 2D�	CI,ads
2 
 (6)

where D is the adatom diffusion constant on the surface, � is
the adatom capture number, and 	CI,ads

2 
 is the spatial average
surface concentration of the adsorbed intermediate.

In the case of homogeneous nucleation, the nucleation rate is
proportional to the collision rate of the intermediate species
(Hill, 1977), and is given by

Rnuc,hom � 2PcCI
2NA

2�I
2��kBT

m
e�Ec/RT (7)

where �I is the diameter of the intermediate, kB is the Boltz-
mann constant, T is the temperature of the medium, Ec is the
activation energy, NA is the Avogadro number, Pc is the steric
factor, and m is the molecular mass of the species.

In the present case, the nucleation is considered as an asso-
ciation of two radicals of the intermediate, with the release of
few organic ligands, according to reaction R2. By analogy to
the above cases, the nucleation rate of step R2 is written as

r2 � knucCI
2 (8)

where the rate constant knuc could be strongly dependent on
temperature.

Monte Carlo (MC) offers a brute force method to simulate
nucleation. An area where kinetic MC has routinely been used
is nucleation and growth of thin films (Gilmer, 1980; Lam and
Vlachos, 2001). Typical two-dimensional (2-D) MC simulation
boxes range from 40 � 40 up to 1,000 � 1,000, which
correspond to 16 nm � 16 nm up to 400 nm � 400 nm
(assuming a lattice size of 0.4 nm). Furthermore, with a few
exceptions (Katsoulakis et al., 2003; Vlachos and Katsoulakis,
2000; Lam et al., 2001; Snyder et al., 2003), MC simulations
have been limited to situations where the external field (such as
pressure) is uniform, and, as a result, they are carried out under
periodic boundary conditions. Numerous practical systems are
much larger in size (such as millimeters to many inches), and
exhibit gradients across the domain (Raimondeau and Vlachos,
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2002). Application of MC methods for such large length and
time scales and systems under gradients is impractical. Our
system is relatively large (the alumina disk thickness is �1
mm), and exhibits gradients in concentrations of species due to
the countercurrent configuration and the presence of chemical
reactions. Therefore, a hybrid method using the Poisson distri-
bution function is employed in which the first three discretiza-
tion levels are treated deterministically, whereas nucleation at
the 4th level is treated stochastically (see below for adaptive
mesh methodology). In particular, the probability for nucle-
ation Po is proportional to the nucleation rate, and is expressed
as molecules per second. The probability for a nucleation event
in a time tnuc after the creation of a previous nucleus is assumed
to be (Toschev et al., 1972)

P�tnuc� � 1 � exp��tnucPo
 (9)

where

Po � r2NA�Vn/ 2 (10)

Here, �Vn is the volume available for the molecular collisions
within a pore of radius ro and equal length to the discretization
�Xn of the appropriate nth mesh level (discussed further in the
numerical section). The factor of 2 in Eq. 10 accounts for all
possible combinations of the reacting molecules and is a con-
sequence of interaction between averaging and the nonlinear
operators (Scappin and Canu, 2001). At every time step, the
probability for nucleation is computed at all spatial locations.
Similar to Vekilov et al. (1997) P(tnuc) is computed and com-
pared at every time step with a random number between 0 and
1. When the random number is larger than P(tnuc), tnuc is
incremented by �t, whereas, when the random number is less
than P(tnuc), a new nucleus is seeded and tnuc is set to zero.
Validation of approximating the nucleation through the afore-
mentioned approach has been carried out in a well-mixed batch
reactor (analogous to one node) by comparing fully stochastic
MC simulations to the hybrid approach proposed here by using
Eq. 9, and good agreement was found as shown in Appendix A.

Growth, which occurs on newly born nuclei and already
growing clusters, is described as a moving boundary problem.
Common techniques to simulate the moving interface of grow-
ing materials include the front tracking, the level-set, and phase
field models, for example, Bonilla et al. (2001); Gyure et al.
(1998); Kyu and Chiu, (2002); Osher and Sethian (1988);
Vekilov et al. (1997). The velocity of the moving interface is
proportional to the rate of metal production and is

V �
r3

�
(11)

where � is the atomic volume of the crystal. The growth at
every point depends on the local concentration of the interme-
diate through the heterogeneous growth rate, given by Eq. 2.

Pore evolution

Continuum and discrete models have been developed to
describe porous media (Sahimi et al., 1990). Continuum mod-
els include the grain model (Szekely and Evans), or capillary

models. Among capillary models, the random pore model
(Hashimoto and Silveston, 1973), the pore tree model (Simons
and Finson, 1979), and the random capillary model (Bhatia and
Perlmutter, 1980; Gavalas, 1980) are well known. In the
present study, we consider an idealized capillary model, where
the porous substrate is treated as a solid matrix filled with open
cylindrical tubes of the uniform radius (see Figure 1b). A single
pore is depicted in Figure 1c. Depending on the interaction
properties of the substrate and depositing material (such as
wettability and surface tension), the deposit could grow along
the surface of the substrate (heterogeneous nucleation) or in the
fluid phase (homogeneous nucleation). Homogeneous nucle-
ation is only considered in the current simulations, as shown in
Figure 1c. The surface area per unit volume of the substrate and
the porosity can be expressed as functions of the pore radius
(Xomeritakis and Lin, 1994b)

dr�

dt
� V or r� ��

0

t

Vdt (12)

S� �
2��o��

ro
(13)

� � �o�r�

ro
� 2

(14)

Here r� is the instantaneous radius of the pore at a specified
location across the substrate, and ro is the initial pore radius.
The radius of the deposit is obtained by keeping track of the
displacement of the solid-fluid interface, indicated in Eq. 12.

Figure 1. (a) Opposing reactants geometry, (b) porous
medium filled with capillaries of uniform radius
and an ideal pore, and (c) growth due to nu-
cleation.
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Geometry, Boundary and Initial Conditions

Based on the experiments of Fernandes et al. (Fernandes et
al., 2001), the opposed reactant flow geometry (ORFG) is
simulated and depicted in Figure 1a. The equations are solved
in one dimension. The above set of differential and algebraic
Eqs. 1–14 is solved, assuming the following boundary and
initial conditions

kCi�Ci
0 � P̂iCi� � � ji

f � ji
s� � n� , at boundary ends (15)

and

Ci � 0, at t � 0, and i � H2, P, I (16)

Here kci
is the external mass-transfer coefficient, Pi is the

inverse partition coefficient of species i, Ci
0 is the outside bulk

fluid concentration of species i, and n� is the normal unit vector.
In Eq. 15, the external mass flux of species i is equated to the
diffusive flux into the substrate. The substrate is initially taken
to be free of all species, as indicated by Eq. 16, unless other-
wise specified.

Multiscale Strategy

Using the method of lines, the spatial derivatives of Eq. 3 are
approximated using a second-order finite difference scheme.
The resulting system of differential-algebraic equations is in-
tegrated in time using the explicit Euler method at the finest
length and time scale, where nucleation and growth occur. The
fifth-order, implicit Runge-Kutta solver Radau5 was employed
(Hairer and Wanner, 1991) at all other mesh levels (see below
for detailed description of mesh levels). During nucleation and
growth, sharp spatial gradients exist in the concentration of the
intermediate over a relatively small length scale on the order of
0.1 microns. In order to capture atomic-scale features over a 1
mm thick substrate with a uniform mesh, an impracticably
large number of O (106) nodes is needed. Hence, the adaptive
mesh refinement algorithm developed by Berger and Oliger
(Berger and Oliger, 1984) is employed to significantly reduce
the computation cost and the memory requirements, while
being able to resolve phenomena at small scales. This method
is often used to solve hyperbolic partial differential equations,
and has been successfully used by Choptiuk to solve problems
involving critical phenomena in relativity (Choptiuk, 1993).

At the beginning of the process, the numerical solution is
relatively smooth because of low nucleation rates. This situa-
tion is retained until the concentration of the intermediate
builds up to relatively high concentrations (depending on the
nucleation rate constant). During this initial period, only one
level of refinement, a coarse mesh (l1) of 101 nodes, is used, as
shown in Figure 2. The probability for nucleation at this level
is evaluated at each node using Eqs. 9 and 10. In Eq. 10, the
volume �Vn is assumed to be the volume of a uniform cylinder
of radius ro, and length �Xn, where n � 1 prior to any
nucleation (for the first level) and n � 4 after the first nucle-
ation event (for the finest level). As the concentration of the
intermediate species increases with time, the probability of
nucleation increases. Initial simulations have revealed that, if
the probability for nucleation is arbitrarily low, nucleation can
start at locations where subsequent growth does not occur. To

avoid unnecessary refining of the mesh in such locations,
additional constraint is set on the probability for nucleation of
the first event to be larger than a threshold value Po � P*o. This
additional constraint is applied only to minimize the hit-and-
miss refinements of the mesh. The selection of P*o is described
in the results section.

Upon decision for a successful nucleation event on the
coarse mesh l1, a refinement of four nodes on either side of the
identified node, indicated by a (*) in Figure 2, is done (9 total
nodes, spanning 80 microns of real space) to create the second
mesh level. The third and the fourth levels of refinement, are
also incorporated at the same time, spanning 40 microns of real
space, a width that is adequate for the deposits studied here. A
refinement ratio of 10 for the second and third levels, and 100
for the fourth level, are used by successively picking the most
probable location at every level. This location is decided by the
local concentration (according to Eq. 8), which in turn is
computed by cubic spline interpolation from the immediately
coarser mesh. For simplicity, once the mesh has been refined,
no further changes are done.

The spatial resolution provided by the four levels is adequate
to capture nucleation events in space. Due to depletion of the
intermediate by nucleation, the subsequent growth of the nu-
clei, and the opposed flow reactants geometry, the local super-
saturation decreases. In addition, the growing deposit decreases
the porosity resulting in transport limitations for production of
the intermediate, which further lowers the local supersatura-
tion. As a result, nucleation often occurs over short periods of
time, and in a spatially limited regime compared to growth. The
overall multiscale, hybrid methodology presented here paral-
lels fluid-flow simulations where coarse levels were modeled
with continuum fluid mechanics, and fine levels with discrete
particle simulations (direct Monte Carlo simulation method)
(Garcia et al., 1999).

Communication between mesh levels

The communication between the different levels of refine-
ment is crucial for consistent simulations. For clarity, it is also
described between the first and the second levels of refinement.
The solution from the first level is used to determine the
location in space, indicated by O* in Figure 2, for incorporation

Figure 2. Adaptive mesh refinement used consisting of
four levels.
Mesh size of each level is indicated in the figure.
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of the second-level mesh based on probability arguments, de-
scribed previously. The second-level mesh extends four nodes
on either side of O*, for numerical robustness. The initial
conditions of concentrations for time integration at the second
level are obtained by cubic spline interpolation of the concen-
trations, at time t, corresponding to all nodes E, O, O*, O, and
E on l1. The values at the end nodes E set the boundary values
for the second level. The spatial interpolation is done only once
for every level, when it is introduced, except for the last level
discussed below.

Following upon previous work, the time step for integration
at each level ln is taken to be half of the next coarser level, that
is, �tn � �tn�1/ 2, n � 2, 3. Note that this choice controls
only the frequency of updating the information between levels,
and is much smaller than the diffusion time-scale. With regard
to the information passing between scales, the values of the
species concentration of the end nodes E on l2 at t, t � �t2,
and t � 2�t2, are obtained from time interpolation of the
species concentration, at the corresponding nodes E on l1 at
time t, and t � �t1. Even though the system of differential
algebraic equations is integrated implicitly at levels l1-l3, with
an adaptive time step that is typically very small, compared to
the physical time scales, the solution at each level is corrected
at predetermined time steps of �tn for n � 1, 2, 3. For
example, at time t � �t1, the solution obtained using the finer
mesh l2 is mapped onto the coarser mesh l1 at the overlapping
nodes O, O*, and O. The same strategy holds for the second
and third levels, respectively. The first three levels are used to
solve the system of equations describing the conservation of
fluid phase species (Eq. 3), whereas the fourth level is dedi-
cated to nucleation and growth. At the fourth refinement level
porosity, interfacial surface area, and the consumption of the
fluid-phase species by nucleation and growth are determined,
and supplied to the coarser levels.

Tracking of the moving interface and evaluation of
consumption terms

The nucleus that is seeded onto the finest mesh is assumed to
have a height and a depth of 0.5 nm, and a width of 1 nm. The
latter dimension is comparable to the resolution of the finest
mesh (this is not exactly comparable to the assumption of a
critical nucleus of two molecules). A Dirac delta function 	 is
used to keep track of the nodes where metal deposition can
occur. The growth is modeled as a moving interface problem,
with the velocity of the interface computed using Eq. 11. When
the interface lies between two nodes, the concentration at the
interface is obtained by linear interpolation of the two nodes
that lie on either side of the interface. The displacement of the
interface is obtained by explicit time integration of dx/dt � V
using the Euler method. The radial displacement, surface area,
and porosity at each node are determined using Eqs. 12–14.

Due to the stochastic nature of nucleation, the average con-
sumption of the intermediate species due to nucleation and
growth over an integration time interval �t3, is determined by
spatial averaging on the finest level l4, accounting for consump-
tion due to nucleation events, and for growth.

Results and Discussion

Table 1 shows the list of parameters used in the present
simulations. Most of the transport parameters and substrate

conditions come from the experimental system of Fernandes et
al. (2001). The rest of the parameters are not as well known. In
particular, the reaction rate constant K1 is obtained by assum-
ing an activation of 10 kcal/mol, a pre-exponential of 1014

cm3/mol s, and an isothermal system at a temperature of 350 K.
KHet is obtained using the rate expression of Hansen and
Neurock (2000), with a growth rate constant of 10. A nucle-
ation rate constant of 10�6 cm3/mols is used for the nucleation
rate calculation, that is two-orders of magnitude less than that
obtained using the collision theory of gases, assuming an
activation energy of 45 kcal/mol and a steric factor of 1. The
mass-transfer coefficients used in the boundary conditions are
obtained from correlations (Cussler, 1997), assuming laminar
flow through a circular tube. Using these parameter values as a
basis, parametric studies were performed by varying selected
parameters from the presented (nominal) values of Table 1.

First, the role of the threshold in nucleation probability used
to refine the mesh at level l1 is discussed. This threshold is
distinctly different from the critical concentration modeled
through the Heaviside function in conventional methods. Here,
the threshold is used only to identify the potential location for
growth in the substrate, and not the nucleation event itself. It is
at the finest level that nucleation events can occur based on the
nucleation probability. The effect of the threshold probability
on the location and time of the first nucleation event is shown
in Figure 3. For these simulations, the substrate is initially
empty, and the simulation parameters are shown in Table 1. As
seen in Figure 3, the lower the threshold probability P*o, the
lower the time for nucleation. However, premature nuclei do
not lead to growth. The dotted line in Figure 3 shows the
minimum threshold probability that leads to substantial growth
of the deposit. Therefore, for all the simulations presented

Table 1. Nominal Values of Simulation Parameters

Reaction Parameters
K1 � 106 cm3/mol s,
KHet � 10 (cm3/mol)0.5/s,
KNuc � 10�6 cm3/mol s

Diffusion Parameters
Dm,H2

� 4 � 10�4 cm2/s, Dm,P � 1.86 � 10�5 cm2/s, Dm,I � 7
� 10�6 cm2/s

DH2,M � 10�6 cm2/s, DP,M � DI,M � 0, HH2
� 1.0

Adaptive Mesh Refinement Parameters
�t1 � 1 � 10�3, �t2 � 0.5 � 10�3, �t3 � 0.25 � 10�3, �t4

� 0.125 � 10�3 (Dimensionless)
�x1 � 10�3, �x2 � 10�4, �x3 � 10�5, �x4 � 10�7 cm

Palladium Properties
� � 0.1042 moles/cm3, 
Pd � 12.2 g/cm3

Substrate Properties
�o � 0.5, � � 3, ro � 10�5 cm, rplug � 5 � 10�8 cm, L � 1

mm

Boundary Conditions Parameters
kCH2

� 3 � 10�3 cm/s, kCP
� 6.41 � 10�3 cm/s, kC1

� 1.2
� 10�4 cm/s

P̂H2
� P̂P � P̂I � 0.5

Bulk Fluid Concentrations
CP

o � 1.31 � 10�4 mol/cm3, CH2
o � 6 � 10�6 mol/cm3

The diffusion parameters of H2 and the precursor, the Pd properties (atomic
volume and density), the substrate scales, the external mass transfer coefficients,
and the concentrations are estimated for the experimental system of (Fernandes
et al., 2001).
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below, P*o is set to 0.05, unless otherwise stated. Note that in
this and subsequent simulations reported below, the nucleation
time and location are stochastic in nature. However, due to the
deterministic form of the governing equations at computational
levels 1–3, the concentration of the precursor behaves deter-
ministically prior to nucleation. As a result, the choice of the
location for mesh refinement at level 1 is unaffected from the
value of P*o. Small variations in nucleation time and location at
level 4 are only observed between independent simulations
repeated with different seeds of the random generator. On the
average, these changes are much smaller than the changes
observed by varying the model parameters discussed below.
Thus, only single run simulations (except for Appendix A
where multiple runs are carried out) are presented.

Feasibility studies

Figure 4 shows the evolution of the reactants (panel a),
intermediate (panel b), and the deposit (panel c), along the
length of the substrate, as observed from l1. Due to higher
diffusivity of H2, the reaction front starts close to the precursor
side and moves within the substrate at relatively short times (t
� t1), which are not shown (t1 is close to the nucleation time
for this case). At longer times (t � t1), the reaction front
stabilizes near the stoichiometric location. Assuming quasi-
steady state and an infinitely fast reaction R1, it is easy to show
(Fernandes et al., 2001) that the stoichiometric location is
determined from the ratio of the fluxes of the reacting species,
and the stoichiometric coefficients according to reaction R1,
and it is equal to x/L � �/(1 � �), where L is the thickness
of the substrate, and � � CH2

Dm,H2
/CPDm,P is the ratio of the

product of the boundary concentration, and diffusivity of hy-
drogen to that of the precursor. Given the values of concentra-
tions and diffusivities used here, this location is near the middle
of the substrate. While this is an expected result from the
quasi-steady-state model, note that simpler transient diffusion-
reaction models studied in Gummalla et al. (2003) have shown
that this location occurs near the stoichiometric point only

when nucleation is relatively slow compared to the species
diffusion and the kinetics of intermediate formation (through
reaction R1), which is the case for the chosen conditions.

The concentration of the intermediate increases with time,
leading to a higher probability for nucleation. After the first
nucleation event, the nucleated metal grows autocatalytically in
the presence of the intermediate, resulting in the growth of the
deposit in both the axial (density dimension) and the lateral
direction until the pores are plugged. The profiles of the reac-
tants, intermediate and deposit at short times after nucleation
(time t2), are also shown in Figure 4. The time for pore
blocking is arbitrarily defined here as the time taken for plug-
ging a continuous region of the substrate of 100 nm, captured
only at levels 3 and 4. At levels l2 and l3, the deposit still
appears to be growing at a given node, as the concentrations are
averaged over larger domains, corresponding to the resolution
of these coarser levels. For the current simulation, pore block-
ing takes place after �6.5 min. The autocatalytic nature of
growth through reaction R3 results in fast depletion of the
precursor near the deposition regime. An asymmetry of the
intermediate concentration profile resulting from the need for
H2 reduction of the intermediate I is also seen. This asymmetry
is also manifested in the deposit itself, as seen from the finest
mesh levels in subsequent graphs. At longer times, the inter-
mediate is consumed on the hydrogen side first, and on the
precursor side later, as hydrogen starts diffusing through the
deposit towards the precursor.

Figure 4. (a) Typical transient profiles of the reactants,
(b) intermediate, and (c) the deposit observed
from level 1 at times ti � 4 min, t2 � 5.8 min,
t3 � 12 min, and t4 � 19 min.
The simulation parameters are indicated in Table 1, with P*o
equal to 0.05.

Figure 3. Effect of threshold probability (P*o) on the loca-
tion of the first nucleation event, used for
mesh refinement (squares, right vertical axis),
and the corresponding time (circles, left verti-
cal axis).
Below a certain threshold, indicated by the dotted line, no
growth results in the region where the first nucleation event is
chosen. The simulation parameters used are shown in Table 1.
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Location of the deposit

As mentioned earlier, in the infinitely fast reaction, quasi-
steady-state model of (Fernandes et al., 2001) the location was
determined by �. In order to explore the effect of this dimen-
sionless parameter, Figure 5 shows the profiles of deposit at
pore plugging for varying �, with the remaining conditions as
indicated in Table 1. It is seen that � has a strong effect on the
location of the deposit. When � is less than 1, the deposit is
closer to the hydrogen side, as the concentration of hydrogen is
higher. Conversely, when � is greater than 1, the reaction zone
is stabilized near the precursor side. The effect of � on the
location of the deposit is in agreement with the simple model
(Fernandes et al., 2001), when nucleation is relatively slow
compared to diffusion and intermediate formation kinetics.

The transient nature of these simulations along with the
importance of the evolutionary nature of deposition found
using classic time-dependent, diffusion-reaction models (Gum-
malla et al., 2003) motivates the exploration of the effect of
initial conditions on deposit location. Figure 6 shows the mor-
phology and location of the deposit at pore plugging for three
different initial conditions and simulation parameters indicated
in Table 1. The initial conditions considered are: (a) pores filled
uniformly with the precursor at the inlet concentration; (b) the
precursor has diffused into the system to give a linear concen-
tration profile; and (c) no precursor in the pores. These initial
conditions are depicted in the inset of Figure 6. In all three
cases no hydrogen was initially present in the pores (at time
t � 0). Very thin deposits are obtained when the precursor is
initially present in the substrate pores. In addition, the location
of the deposit is considerably shifted towards the hydrogen
side, with increasing initial loading of the precursor in the
pores. Analysis of the transient species profiles showed that the
reaction front starts near the hydrogen side and moves with
time into the substrate. For high concentrations, once a nucleus
is formed, it grows rapidly to block the pores, resulting in a few
nucleation events. In particular, only six nucleation events
occurred in case (a) before the pores were plugged. Similar
trends, but less dramatic, were observed in case (b). The time
for pore plugging was 2 min. and 3.5 min. for cases (a) and (b),
respectively. From a practical point of view, the startup of the

experiment can be used as another means of controlling the
deposit. At the same time, failure to account for the startup
could result in apparently nonreproducible results.

Figure 7 compares results from the current multiscale sim-
ulations (vertical axis) obtained in Figures 5 and 6, with the
simple quasi-steady-state model (horizontal axis) of Fernandes
et al. (2001). While the effect of concentration is captured by
the quasi-steady-state model, and it is apparent that the effect
of the initial conditions on the deposit location is essential. The
effect of nucleation-related parameters, namely, the threshold

Figure 5. Effect of � on the location of the deposit as
observed from level 4.
The simulation parameters are indicated in Table 1, except for
the inlet concentration of CH2

o that varies with �. � � 1
corresponds to the nominal case.

Figure 6. Effect of initial conditions on the location of the
deposit for � � 1.
The simulation parameters used are as indicated in Table 1.
(a) Three different initial conditions are considered as de-
picted in the inset, namely: pores filled with the precursor at
the inlet concentration, (b) a linear profile of precursor, and
(c) no precursor in the pores. In all cases, hydrogen is not
present within the pores at time t � 0. Thinner deposits are
obtained at pore plugging when the pores are initially filled
with precursor. The location of the deposit is considerably
shifted towards the hydrogen side with varying initial condi-
tions.

Figure 7. Parity graph showing the location of the de-
posit as predicted by a simple quasi-steady
state model (horizontal axis) and the current
multiscale model (vertical axis).
The squares close to the straight line correspond to simula-
tions presented in Fig. 5. Points (a)–(c) correspond to simu-
lations of Figure 6, the triangle to P*

o � 0.03, and the circle
to Knuc � 10�5 cm3/mol s. Both � and the initial conditions
have a dominant effect on the location of the deposit.
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P*o, and the physical parameter Knuc (triangle and circle data
points in Figure 7, respectively) have also been studied. The
triangle corresponds to parameters indicated in Table 1, with a
nucleation threshold of P*o � 0.03, and the circle to P*o �
0.05 with an order of magnitude reduction in the nucleation
rate constant to Knuc � 10�5 cm3/mols. In these simulations,
the location of the deposit is only slightly affected from the
nucleation related parameters. Although not studied here, it is
expected that faster nucleation and growth may result in a shift
of the deposition location towards the precursor side, as has
been suggested from simple transient diffusion-reaction models
(Gummalla et al., 2003). From Figure 7, it is evident that the
location of the deposit is predominantly affected by the initial
conditions, and the concentration (and diffusivities, not explic-
itly shown here) of the reactants, whereas the nucleation kinet-
ics has a minor effect, at least when the latter is slow compared
to the processes forming the intermediate.

Growth kinetics

It is expected that the deposit characteristics depend on the
relative competition between growth and nucleation. In order
to explore this aspect, simulations have been performed by
varying the growth rate constant. Figure 8a shows the rate of
nucleation dN/dt defined as the fraction of the total nodes of
level l4, which have nucleated per unit time vs. time for three
growth rate constants indicated. While the initial nucleation
rate is similar in all the three cases (no growth occurs at very
short times), nucleation is limited to shorter times for faster
growth, due to fast depletion of reactants. Figure 8b shows the
effect on deposit thickness and location up to pore plugging as
seen from mesh level l3. It is seen that, for the case of KHet �
1 and 10 (cm3/mol)0.5/s, the location of the deposit is practi-
cally unaffected. However, in the case of KHet � 100 (cm3/
mol)0.5/s the location of pore plugging is shifted by � 6
microns toward the precursor side. The pore plugging times
calculated for the three cases (with KHet � 1, 10, 100 (cm3/
mol)0.5/s) are 14 min, 6.5 min, and 5.2 min, respectively, that
is, for faster growth, the pores are plugged at shorter times after
nucleation.

For the three cases studied, the morphology of the deposit
has also been monitored from the finest level l4 at the same
location in space, and is depicted in Figure 9 for varying times.
After pore plugging, the growth rate is controlled by the
diffusion of hydrogen through the deposit. This situation re-
sults in decreased growth on the precursor side. It takes con-
siderable time after the initial pore plugging to block the pores
elsewhere. The most interesting aspect is that the microstruc-
ture of the deposit is more uniform at short times, in the case
of slow growth rates, because there is enough time for reactants
to diffuse around, leading to multiple nucleation events and
growth at various special locations. Therefore, film uniformity
and defects are affected by the interplay of nucleation and
growth kinetics. At long times, the film becomes continuous for
all cases.

Evolution of the deposit at longer times

Finally, the evolution of the deposit up to long times, as
observed from level l2, is presented in Figure 10, for simulation
parameters indicated in Table 1. Aside from an induction time

needed for the first nucleation event, the deposit grows slowly
at short times, as the available surface area for growth is low
due to the increasing number of nuclei and their initially small
size (up to �5 min). During this time, the concentration of the
intermediate builds up, as shown in Figure 4b. With a further
increase in time (� 6–12 min), the available surface area for
growth increases, as shown in Figure 9b, and, hence, there is a
rapid depletion of the intermediate on the hydrogen side (see
Figure 4b). The reduced concentration of hydrogen on the
precursor side leads to a reduction of the growth rate, and,
hence, relatively higher concentrations of the intermediate are
seen on the precursor side. During the time interval of �9–15
min, growth is predominantly on the hydrogen side, due to the
higher availability of hydrogen. Once the intermediate on the
hydrogen side has nearly been depleted, growth occurs mainly
on the precursor side, as a consequence of the diffusion of
hydrogen through the metal deposit. During this process, any
defects in the deposit are “healed,” as seen from the deposit
morphology at times of 15 min and 25 min. At times greater
than 25 min, it is seen that growth is predominantly on the
precursor side. From the earlier analysis, it is clear that the

Figure 8. (a) Effect of growth preexponential on the nu-
cleation rate and (b) deposit at pore plugging.
Higher growth rate constants lead to fast growth of nucleated
nodes, suppressing further homogeneous nucleation. The total
number of nucleated nodes out of 1.5 104 of level 4 are 658,
2139, and 6932 for KHet � 100, 10, and 1 (cm3/gmol)0.5 s,
respectively. Simulation parameters are indicated in Table 1,
except for the heterogeneous rate constant indicated in the
graph.
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growth at short times is favored on the side of the deposit
toward the hydrogen, and at long times toward the precursor.

Conclusions

A multiscale, hybrid computational framework for simulat-
ing deposition of films within porous substrates has been de-
veloped. The developed model captures the transport of reac-
tants through the pores, homogeneous reaction of the reactants
producing an intermediate species, nucleation (treated stochas-
tically), and growth, treated as a moving boundary problem.
Adaptive mesh refinement is used to resolve the length scales,
varying from nanometer to millimeters. The feasibility of the
approach has been demonstrated in the opposed reactant ge-
ometry with transport parameters taken from the Pd deposition
under supercritical CO2 conditions.

It has been found that the location and thickness of the
deposit within the porous substrate depend strongly on the
boundary concentrations and the initial conditions, and, to a
lesser extent, on nucleation and growth, at least when these
processes are relatively slow. Both boundary concentration and
startup details can be used to control deposition, and special
attention should be placed on the startup for reproducible
results. In addition, it has been shown that the interplay of
nucleation and growth kinetics affects the morphology (rough-

ness, defects) of the deposit, and time for pore plugging. The
time allowed for growth is important in determining the thick-
ness of the deposit and its roughness.
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Appendix: Testing of the Hybrid Simulation
Approach

Here the validity of the proposed hybrid approach is assessed
with simple, well-mixed 1 nm3 reactor simulations (scale ap-
propriate for nucleation). This reactor can be thought of as
one-node of the full model. Transport of reagents is ignored,
but possible changes in the concentration of the intermediate
are induced in an ad-hoc manner, described below. Two par-
allel reactions are considered, namely, generation of the pre-
cursor for nucleation, I, from reactants H2 and P, through
reaction R1, and generation of the nucleus M from the inter-
mediate I, according to reaction R2. Here, k2 � k1 is assumed
to represent a rare nucleation event, where k2 and k1 denote the
rate constants for the nucleation, and the dominant reaction,
respectively.

In the first case, the analytical expression for computing the
temporal probability (Eq. 9) is verified by comparing it to
Monte Carlo (MC) simulations for constant (time-independent)
concentrations of all reagents. For this purpose, a fixed number
of 100 molecules of H2, P, and I each are considered. When
the concentrations of H2, P, and I are fixed and equal, the
probability for nucleation at a given instant is r � k2/(k1 �
k2), and the rate of nucleation is given by Eq. 10. Kinetic MC
simulations have been performed following Gillespie’s algo-
rithm (Gillespie, 1976, 1977), without changing the number of
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H2, P, and I molecules. The probability computed using MC
simulations for having at least one successful nucleation event
after elapsed time t, denoted as P��1, is shown with lines in
Figure A1 for different values of r. The results have been
obtained from �105 independent simulations. The circles are
obtained from Eq. 9, with �t � 1. The excellent agreement
between the two methods is not surprising given the constant
concentrations in the system. The physics in this case is cap-
tured exactly by the Poisson distribution used in the hybrid
approach.

In the second case, the validity of the hybrid approach was
tested, when the concentration of the intermediate changes with
time, a situation that mimics the actual deposition system
better. These calculations were performed with a constant
number of 50 molecules of H2 and 50 molecules of P. The
reactor is assumed to be initially empty of the intermediate I.
The concentration of I builds up with time through reaction R1,
with constant rate r1. In the fully stochastic MC simulations,
two bimolecular events can happen, namely the formation of I,
with a rate r1, and the formation of nucleus M, with a rate r2.
The probability for picking a nucleation event is r � r2/(r1 �
r2). At each instant, the transition probabilities per unit time
are computed, the time is advanced, and an event is picked. At
short times, reaction R1 is picked, and the number of I mole-
cules increases. Once the concentration of I has increased, a
nucleation event happens. The time for the first nucleation
event is recorded, and thus, the simulation is repeated to obtain
the probability density function. The results have been obtained
from �105 independent simulations to ensure the asymptotic
(converged) behavior.

For the hybrid simulations, the concentration of I increases
according to

dCI/dt � r1 (A1)

which is solved using the explicit Euler method. At each time
step, the rate of nucleation is computed using Eq. 10, and the
probability of nucleation is computed using Eq. 9, and is
compared with the random number to determine whether a
nucleation event would occur. With increasing time, the prob-
ability for nucleation increases until a successful nucleation
event occurs.

The comparison of the probability density function for nu-
cleation is obtained from the hybrid approach, and the fully
stochastic MC simulation is shown in Figure A2, for the rate
constants indicated. Additional runs were performed for other
combinations of parameters, similar to those shown in Figure
A1. Reasonable agreement is found in all the cases studied,
even with widely varying rate constants. The differences be-
tween MC and the hybrid approach are attributed to the time
varying concentration of the intermediate I, as the Poisson
distribution is only exact for a constant supersaturation (Tos-
chev et al., 1972).
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Figure A2. Comparison of probability density function
obtained from 105 fully stochastic, indepen-
dent Monte Carlo simulations (filled circles)
and hybrid simulations (Eqs. 9, 10, and A1)
shown as open symbols for k1 � 0.1 and k2 �
10�5 nm3/mol s.
The rest of the parameters are given in the text.

Figure A1. Comparison of 105 independent Monte Carlo
simulations with analytical expression (Eq. 9)
for three constant values of r indicated.
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