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The lumen of the nuclear pore complex is increasingly understood to be lined by a polymer brush

that entropically regulates transport in and out of the nucleus—and it seems likely that similar

effects probably arise with glycocalyx-lined holes in cell membranes. Here we mimic such pore-

confined brushes with self-assembled polymer membranes imbued with nano-holes. Experiment

and theory help elucidate the entropic origin and stabilization of the pores, which appear to have

a similar basis as steric stabilization of colloids bearing polymer brushes. Free energies of

interacting brushes reveal stable minima at pore sizes smaller than the classical metastable point,

with little effect of the particular pore geometry. Such entropic forces have potential implications

for lock and key mechanisms of nuclear pore assembly as well as transient poration of cells and

synthetic nano-pores with regulatory mechanisms for transport.

1. Introduction

Rapid fluctuations of large, natively unfolded nucleoporin

proteins (Fig. 1) reportedly form an entropic barrier to would-

be entrants into the nuclear pore complex.1 Recent measure-

ments of the forces exerted by clusters of nucleoporin chains

indeed demonstrate a large excluded volume typical of

polymer brushes that lack attractive interactions. Dedicated

transport proteins are believed to enter or leave the cell nucleus

by binding the brush and decreasing its entropy. Such brushes

are likewise expected to exert forces on the walls of the nuclear

pore complex, which motivates the experimental and theore-

tical models here.

For several decades, insight into membrane pores has been

obtained from considerable work on lipid vesicles, but the

small headgroups of lipids are unlikely to contribute much in

the way of entropy-dominated interactions that are typical of

brushes within nuclear pores or related structures. With purely

synthetic amphiphiles composed in part of brushy hydrophilic

chains,2–4 physical properties such as brush thickness can be

easily varied and processes such as poration can be both

simulated and imaged (Fig. 1). Using a modified version of

electroporation5 we have recently reported seemingly unique,

stable membrane pores6,7 that inspire comparisons to the

nuclear pore complex. Pore dynamics prove to be strongly

dependent on the hydrophobic core thickness d, which scales

with polymer molecular weight Mn:3 indeed, membrane

response in poration differs greatly for small versus large d.

Here, we theorize on the basis for the post-poration divergence

seen with vesicles formed from diblocks either of poly(ethylene

oxide)–polybutadiene (PEG–PBD, denoted ‘OB’) or of a

related hydrogenated (‘OE’) diblock (Table 1). After electro-

poration, all vesicles form visible pores immediately after

poration (Fig. 2A). Vesicles consisting of thinner membranes

either reseal completely, or, like OB16, rupture from their

initial pore (Fig. 2A, top).6 Similar dynamics in lipid vesicles

have been reported, for example, by the Brochard-Wyart

group using glycerol to slow down pore growth.8,9 In contrast,
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Fig. 1 Natural and synthetic brushy pore structures. The nuclear

pore complex regulates transport into and out of the nucleus.

Simulations of block copolymer vesicles with pores are done by

dissipative particle dynamics,4 and the cryo-TEM of porated vesicles is

done on biodegradable polymersomes.10
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polymer vesicles with thick membranes like OB18 and OB19

do not rend: the vesicles retain their shape but lose phase

contrast long after the initial pore disappears (Fig. 1A,

bottom). This loss of contrast—a direct result of encapsulant

loss—is presumably due to semipermanent pore formation.

The lifetime of such pore formation is of broad interest: a

permanent or long-lasting pore may result in a vesicle with

unique release kinetics, especially for drug delivery10,11 and

DNA permeation.11–13 A gated pore that more closely mimics

the regulated macromolecular transport of the nuclear pore

complex could also be a useful nano-filter. However, the

extended lifetime of pores in polymer membranes might not be

thermodynamic—their existence could be metastable and long-

delayed in resealing, i.e. kinetically trapped. Long lasting pores

can also be achieved through direct physical manipulation of

the membrane. Zhelev and Needham,14 for example, have

reported pores in lipid vesicles that last for seconds under

sustained tension after electroporation. We hypothesize here

that the pores in polymersome membranes are indeed thermo-

dynamically stable after initial formation. We base this pre-

mise on previous observations of long-lasting pores, without

external manipulation, of seemingly inveterate sizes and a

distinctive dependence on membrane thickness but no strong

dependence on vesicle size, at least for giant vesicles of 5–20 mm

radius. Previous work also shows that smaller molecules

escape with simple kinetics, while larger, fluorescently labeled

dextrans do not, even at long times, which suggests a limited

yet constant pore size.6 Additionally, long after poration and

loss of phase contrast, vesicles fail to retain their integrity upon

aspiration by a micropipette. As shown in Fig. 2A, vesicles are

unable to sustain even a modest tension, and instead collapse

completely. Such behavior was observed up to tens of minutes

after poration and subsequent content leakage. On the same

time scales, thinner membranes that initially show ‘‘classical’’

behavior of vesicle rupture can actually reform vesicles,6 a

direct result of the strong energetic preference of a closed

vesicle structure.

With our current repertoire of block copolymers, only the

two largest copolymers—OB18 and OB19—form vesicles that

yield these apparently stable pores. The contrasting behavior

to that of thinner membranes—e.g. those of OE7 and OB2—

suggests that polymer length plays a key role. Specifically, the

Table 1 Vesicle types discussed in this paper and their properties. The brush length, L0, is determined by the Alexander–de Gennes scaling
relation, L0 = Na5/3s0

1/3, and the ‘‘grafting’’ density, s0, is determined by the scaling s0 y N20.3, and s0 for OE7 experimentally determined to be
0.159 molecule nm22.1 The core thickness, d, as well as the lytic tension, tlysis, is obtained from ref. 3

Vesicle type Amphiphile Mn/Da D0/nm PEG length/nm dcorenma tlysismN nm

SOPC C18phospholipid 790 — — 3.0 9.0
OB2 EO28–BD48 3600 1.2 4.0 9.6 14
OE7 EO40–EE37 3900 1.3 5.3 8.0 20
OB16 EO50–BD55 5200 1.3 6.8 10.6 19
OB18 EO80–BD125 10 400 1.6 11.0 14.8 33
OB19 EO150–BD250 20 000 1.8 19.8 21 22
a ¡1 nm.

Fig. 2 (A) Polymersome behavior following electroporation. Both OB16 (top) and OB18 (bottom) show initial pore formation within seconds after

voltage discharge. The pore in OB16 continues to grow until total vesicle rending, obeying eqn (1). OB18 vesicles, by contrast, no longer have any

large visible pores after two seconds, suggesting resealing. However, over long periods of time, loss of phase contrast is observed, corresponding to

content leakage. (B) Sequential frames of micropipette aspiration of OB18 after poration. The vesicle rapidly collapses despite an apparently intact

membrane, suggesting long-lived nano-sized pores. Such behavior is seen even tens of minutes after poration. Scale bars are 20 mm.

This journal is � The Royal Society of Chemistry 2007 Soft Matter, 2007, 3, 364–371 | 365



thicker hydrophobic membrane and the longer PEG corona

could effect a stabilization of the pores formed during electro-

poration. The suggestion of PEG stabilization of morphology

is not new; PEG has long been known to limit aggregation

between colloidal particles.15–17 Here, however, we hypothesize

that the PEG stabilizes an inner substructure. It should be

noted that although it is conceivable that PEG chains may

simply kinetically trap resealing pores, entanglements of chains

are only dominant in the larger of the two polymers (OB19).3

2. Modeling sterically stabilized pores

The behavior of our thicker membranes sharply contrasts with

that observed in typical lipid membranes, where pores are

observed to either reseal quickly or completely rend the

membrane, with only a few notable exceptions.8,14 A simple,

classical energy balance matches the behavior of such lipid-

based pores remarkably well. First described by Derjaguin

et al.,18 the surface and edge energies balance for a pore of size

R in an infinitely thin membrane:

Epore = 2pRC 2 pR2S (1)

Here C is the edge energy per length (line tension) and S is

the surface energy per area (interfacial tension). At a critical

pore size R* = C/S, an unstable pore is predicted, such that

pores smaller than R* reseal and those larger than R* grow

until membrane disintegration. This result has been observed

repeatedly.14,19,20

Our observations of long-lived, and at least metastable pores

in giant vesicles, suggests that our polymeric systems impart an

additional contribution to the overall energy. We hypothesize

that the PEG segments lining the pores create a steric barrier

to resealing, possibly keeping pores open indefinitely (Fig. 3A).

These ‘‘hairy’’ holes are thus stabilized in a manner very

similar to that of colloids by grafted polymers, albeit with very

different geometries.15 The free energy contribution from the

PEG brush DGbrush is thus a new term added to the traditional

pore energy,

Epore = 2pRC 2 pR2S 2 DGbrush (2)

In eqn (1) and (2), the interfacial tension, S, is an empirical

parameter that represents the interactions between the

hydrophobic (poly(butadiene)) and hydrophilic (poly(ethyl-

eneoxide)) blocks. Since we are applying an electric field to

produce the pore in the membrane, the pore formation occurs

through membrane stretching,7 and we therefore assume

that the pore formation occurs at the lytic tension, tlysis, of

the vesicle—i.e., S = tlysis—and can be determined through

micropipette aspiration (see Table 1).3 In contrast, the edge

tension, C, is a semi-empirical parameter that is dependent on

pore geometry. While the nature of a pore edge is generally

unknown, there are two limiting cases: ‘‘hydrophobic’’ or

‘‘hydrophilic’’ pores (Fig. 3A). In the ‘‘hydrophobic’’ case, the

pore is oriented such that the molecules lining the pore retain

their original orientation normal to the membrane surface,

thereby exposing their hydrophobic blocks. The line tension,

C, is therefore the interfacial tension times the hydrophobic

thickness, C = Sd.21 On the other hand, ‘‘hydrophilic’’ pores

have molecules that curve over the length of the pore edge,

resembling the edge of cylindrical micelles (Fig. 3A, bottom

left). In this case C y 2 kb/d, where kb is the bending of the

membrane—which scales as d2,15 and is known for some of

our polymers.22 In either case, C y d. Additionally, for the

PEG to have a steric effect it must sufficiently extend either

laterally or along its length. De Gennes estimates the lateral

(rms) spread in flat brushes to be Dx # (L0s21/2)1/2,23 where

L0is the unperturbed brush length and s is the chain grafting

density. For our largest polymers (d ¢ 15 nm), Dx # 5 nm,

suggesting that ‘‘hydrophobic’’ pores are still able to meet the

minimal criteria for steric interactions. The more likely

situation is somewhere in between the above limits, where

the pore edge is somewhat curved, and we can nonetheless

assume C y d. It has been argued that the membrane energy

for such a partially compressed membrane does in fact scale

linearly with d.24

In determining brush energy, the crucial parameters are the

brush length, L, and the polymer grafting density, s. Balancing

elastic and excluded volume terms25,26 gives the free energy of

a single brush chain as:

m(s,L) # N9/4a15/4s5/4L25/4 + N23/4a25/4s1/4L7/4 (3)

A minimization of eqn (3) in the absence of any external

limitations in brush height immediately gives L0 y Na5/3s1/3,

the well-known relation for polymer brush thickness and

density. Here N is the number of segments and a the segment

length (0.367 nm for EO). For a polymer membrane with fixed

Fig. 3 (A) Cartoon of pore interior schematically depicting the PEG

surface brush. The hydrophobic thickness d and brush length L vary

for each system studied. Below are possible schematics for hydrophilic

(left) and hydrophobic (right) pore schematics. In either case, the line

tension does not change the scaling in d, and so for the purposes of this

calculation, the two are indistinct. (B) For alternative geometries, if we

restrict our calculations to surfaces of the form r = S(z,h) = R?f(j), we

can decouple the integrand into z-dependent and z-independent parts,

which allows for greatly simplified calculations.
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brush density s = s0 everywhere, the energy of the chain is

m(s0,L0) = m0(L0) = L0s0
1/2, and from eqn (3), the free energy

of a compressed brush initially at brush thickness L0:

m0(L) = m(s0,L) # Ls0
K [(L0/L)9/4 + (L/L0)3/4] (4)

As a first approximation to our problem, we simplify

the surface geometry first treated by de Gennes, namely,

that of two opposing plates with grafted polymer chains of

unperturbed length L0 being brought into contact at a

separation R.27,28 The free energy contribution of the brush

to this compression is DG = 2s0(m0(L) 2 m0(L0)) where the

prefactor of 2 accounts for the two plates involved:

DGbrush y 2s{Rs0
1/2[(L0/R)9/4 + (R/L0)3/4] 2 L0s0

1/2} (5)

Note that eqn (5) represents the change in energy, per unit

area: the reference state, which here is simply the plates at

infinite separation (G0 y 2L0s0
3/2), has been subtracted. At

separation distances 0 , R , L0, eqn (5) is valid; for R ¢ L0,

the plates have no contact with each other and therefore

DGbrush = 0.

One key difference between our bilayer membranes and

chemically grafted brushes described by eqn (5) is that in our

polymersome systems the grafting density, s, is not predeter-

mined. It is naturally selected by (equilibrium or kinetic)

conditions of the self-assembly process.29–31 The PEG’s

average distance between chains in these systems (i.e. an

‘‘effective grafting density’’ for the fluid membrane) is a

balance of excluded volume effects, in which the chain pressure

tends to decrease s, and the interfacial tension of the

membrane, in which the energetic penalties of increasing the

surface area tend to laterally compress the brush.32 For our

polymers, scaling arguments have been determined for

this separation distance, in both intact (zero curvature)

membranes (s y N20.3)3 and cylindrical (one axis of

curvature) micelles (s y N20.2).33 Within the pore, however,

the two axes of curvature, in opposite directions (toroidal

geometry), suggest s will probably have an intermediate

scaling, and the density of chains is presumably a function

of both position and pore size. For our initial calculations,

we will crudely assume that s = s0 is constant everywhere

and at the value experimentally observed for the flat brush

(Table 1).

While the assumption of a flat surface is an oversimplifica-

tion, we will address more complex pictures in turn and show

that there is little effect from curvature. As a next step, we

modify the one-dimensional picture of two interacting flat

plates by examining various pore surfaces that are axially

symmetric about the pore center. This in essence becomes a

Derjaguin type approximation to account for pore curvature.

Most generally, we integrate the interaction energy over the

surface to obtain:

DGbrush = SA#dm(r;R,s)s(r;R)dA (6)

with dm = m 2 m0(L0), and s the two-dimensional density of

polymer chains, which presumably would also vary with the

pore size R. Geometrically, we begin with the simplest case of a

cylindrical pore, from which more complex geometries give

only a change in the coefficients in the free energy. For R , L0,

eqn (6) yields

DGbrush $ 8pds0
23/2 (0.2L0

9/4R21/4 + 0.14 L0
23/4R11/4

2 0.4 L0R)
(7)

and again, DGbrush = 0 for R . L0. The first term in eqn (7)

is essentially an osmotic pressure term. As R decreases, the

lateral pressure increases and the chain–chain repulsion

resists closure. As the pore grows, the pore wall no longer

compresses the molecules, and the chains fill the created void

at the cost of the elastic energy, the second term of eqn (7). The

final term in the eqn represents the baseline energy of the

molecules in the pore, the population of which varies linearly

with pore size.

For more complex pore geometries, we can, from eqn (6),

derive relations similar to eqn (7) except here we shall consider

alternative geometries. In cylindrical coordinates, the Jacobian,

dA = rdzdh, and we define a surface, r = S(z,h) around the

z-axis. Assuming as before that s(r) y so everywhere, we can

rewrite eqn (6) as

DGbrush = s0 0#2p2d/2#d/2(m0(L(z,h)) 2 m0(L0))S(z,h)dzdh (8)

where

L(z,h)~S z,hð Þ if S z,hð ÞvL0

L z,hð Þ~L0 elsewhere
(9)

and L0 is the unperturbed length of the brush (Fig. 3B). That

is, a chain is compressed to the size of the pore radius only if

the natural length of the chain, L0, is larger than the distance

to the center of the pore.

We shall now make two assumptions. First, we restrict our

calculations to those surfaces of the form

S(z,h) = Rf(z/d) = Rf(j), 2K , j , K (10)

which leaves out important surfaces of zero Gaussian

curvature, but allows for great simplifications in the calcula-

tions, as we shall see. Second, we shall assume that there is no

value for R (the nominal radius) where there is intermediate

contact across the membrane thickness; that is, we shall

consider cases where either L(z,h) = S(z,h) for all or no z (in the

latter case DGbrush = 0). Again, this leaves out critical parts of

the calculation, but it is intuitive that the real curves would be

some intermediate value, or smoothing, between the two cases

for a very small range in R.

With these assumptions, eqn (8) becomes

DGbrush = 2pds021/2#1/2 [m0(R f(j)) 2 m0(L0)]R f(j)dj (11)

where R , L0. Since we have defined the surface S to have

separable variables in both R and z, when combined with

eqn (4), we are now able to separate the z-containing terms and

remove the others from the integral:

DGbrush y 8pds0
3/2(0.2aL0

9/4R21/4 + 0.14 bL0
23/4R11/4

2 0.4 L0R)
(12)
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where

a = 21/2#1/2(f(j))21/4dj, and b = 21/2#1/2(f(j))11/4dj (13)

For the paraboloid surface S(j) = R(1 + j)2, a = 0.910 and

b = 1.154, and for the catenoid surface S(j) = Rcoth(j), a =

0.953 and b = 1.073, and in general of order one, and so do not

significantly affect the results presented here.

3. Discussion

Combining eqn (1) and (7), we arrive at a new relation for

the energy of a pore that includes the effects of sterically

stabilizing polymer chains. Plotting the energy landscape for

pores in selected polymersomes shows local minima occurring

at values below the unstable point R* predicted by eqn (1)

alone (Fig. 4A). These minima, denoted as Rm, are intriguing

but are not strictly stability points, as we discuss below.

The energy balance, as given in eqn (7), is by no means

complete; however, the inclusion of more complex parameters

would not affect the results qualitatively. Including a dynamic

surface tension, which scales as S y R2,8,34 for example, would

not change the essential results here, since the steric effects will

persist only at small length scales, even if the surface tension is

dissipated. In short, the assumptions used in deriving eqn (7)

are crude yet sufficient, as written, in explaining the nature of

the observed stable or metastable pores.

Similarly, related axisymmetric geometries (e.g., a catenoid

or a paraboloid) are tractable and give the same form of eqn (7)

with numerical prefactors of order unity.

The domain of eqn (7), however, is limited. We anticipate

that the result is only valid for the regime where R . Rf, where

Rf is the Flory radius (yN0.6a). For pores smaller than this

critical size, the entropic energy of the chain changes sign;

further reduction in the size of the pore would result in

prohibitively compressed chains. This is especially true in the

‘‘hydrophilic’’ pore; in the ‘‘hydrophobic’’ case, when the pore

size is less than the Flory radius, the hole simply ceases to exist.

Thus, if the mathematical minimum of eqn (7), Rm, is greater

than Rf, then we define Rstable = Rm, the predicted stable size of

the membrane pore.

For R , Rf pores, the energy, DGbrush, may be strictly a

result of the entropic cost to physically displace the chains out

of the pore; as only the chains near the edge of the pore are

affected. The number of molecules (and consequently the total

energy) scales as the area of the pore, R2, which can be treated

simply as a rescaling of the surface tension in eqn (1) (implying

pore resealing). The line tension may also be affected by the

crowding of molecules around the pore, as discussed by

Fournier and Joos.21 Generally, molecular crowding is only a

local effect in our systems due to the length of the chains, but

can become a factor for smaller pores.

The resulting overall energy landscapes show minima, Rm,

increasing with d as indicated in Fig. 4B, and summarized in

Table 2. In agreement with experiments, only OB18 (d = 15 nm)

and OB19 (d = 21 nm) exhibit stable pores of sizes greater than

the Flory radius, at Rstable = 7.2 nm and Rstable = 15.6 nm,

respectively. In the case of OB18, we have estimated the pore

diameter to be y5 nm (by visualizing the release of different-

sized encapsulated molecules),6 in good agreement with our

theoretical results. The smaller diblocks have minima below

Rf, outside the valid domain of eqn (7). Indeed, these diblocks

produce vesicles without any apparently stable pores.

Fig. 4 Prediction of stable pores in polymersome membranes. (A) Energy landscapes for ‘‘hairy’’ pores, Etot, as a function of membrane thickness

d (eqn (7)). The behavior at R . L0 is that of traditional pore theory (eqn (1)). (B) Graph of dimensionless Rm/Rf of stable points for vesicles from

polymers outlined in Table 1. As mentioned in the text, the value of R for which eqn (7) has a relative minimum (Rm) is considered to be the

predicted size of a stable pore (Rstable) if and only if it is greater than the Flory radius (i.e., Rstable = Rm if Rm/Rf . 1). Otherwise, no stable pore is

predicted to exist. Long lived, multiple, pores are only observed for d = 15 nm (OB18) and d = 21 nm (OB19) membranes (see Table 2).

Table 2 Values at which eqn (5) is minimized for the polymersomes
outlined in Table 1, Rm, the lower and upper boundaries on R (Rf and
R*, respectively) and the experimentally-determined pore size. Only
OB18 and OB19 form vesicles which exhibit stable pores upon
electroformation. Note that Rstable = Rm only if Rf , Rm , R*. The
Flory radius is aN0.6, and R* is the maximization of eqn (1)

Vesicle name Rf/nm Rm/nm R*/nm ‘‘Stable’’ pore size

SOPC — — 19.6 —
OB2 3.3 1.5 11.5 —
OE7 2.6 0.72 17.0 —
OB16 3.8 3.6 12.3 —
OB18 5.1 7.25 12.2 y5 nm7

OB19 7.4 15.7 23.7 .6 nm7
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From eqn (5) we can determine the dependence of Rm (and

therefore Rstable) on diblock properties. Trends from virtual

polymers with fixed core size but varying PEG brush thickness

(Fig. 5A) suggest that Rm y aL0
2d, where a # 15 Å22 over

typical values of L0 and d. This relationship implies that

thicker brushes will yield larger holes, which is observed in the

apparent pore sizes of OB18 and OB19. Mathematically, it is

apparent that Rm , R*, the unstable point of eqn (1) and the

point at which the surface tension dominates both the line

energy and the brush energy. With both an upper (R*) and a

lower (Rf) boundary on Rstable, and a one-to-one corres-

pondence between Rstable and L0(L0 y (Rstable/d)1/2), the brush

thickness that is capable of stabilizing a pore in a membrane of

thickness d and PEG spacing D0, is bounded:

[(N0.6a)/(ad)]1/2
¡ Lo ¡ [(C/S)/(ad)]1/2 (14)

For brushes smaller than this value, the minimum pore size

as calculated by eqn (7) is smaller than the size of an individual

polymer chain. For larger brushes, the sugar chains do not

allow the pore to reach a small enough size where line tension

can balance the surface tension. The narrow range of

membranes capable of producing stable pores in the manner

of polymersome poration suggests why in general they are

rarely observed.

One system in which stable pores are reported is in the

erythrocyte membrane. Osmotic tension of erythrocytes,

depending on conditions, can result in pores ranging from 2

to 10 nm that can last for several days.35 Erythrocytes

possess a surface brushy layer (glycocalyx)36 whose height

is estimated to be 6–20 nm.37 This is substantial when

compared to the lipid bilayer thickness of 3–4 nm.38 The

existence of these thermodynamically stable pores—not found

in liposomes of similar composition14,39,40—suggests that the

brushy glycocalyx again plays a steric role in stabilization.

While glycolipids may preferentially partition into the pore

(reducing C), the argument for the maximum and minimum

size of the pore still holds, as eqn (8) can account for changes

in the line tension. For a red blood cell membrane, eqn (8)

predicts that stable pores are possible for a glycocalyx of

7–20 nm in thickness; a reduced line tension would reduce the

maximum value. As mentioned before, this range is a result of

1) a thicker brush (in this case, glycolipid sugars) dominating

the system at pore radii larger than the critical unstable point

leading to rupture, and 2) a thinner glycocalyx not giving

‘‘enough’’ stabilization. For erythrocytes, this theoretical

window indeed coincides with the observed glycocalyx thick-

ness (Fig. 5B). This limited size range is especially intriguing,

since glycocalyx thickening has been implicated in the

senescence of erythrocytes,41 which may therefore cause

existing pores to expand beyond the critical size and induce

membrane instability. Additionally, for a nominal glycocalyx

thickness of 10 nm, the predicted stable pore size, Rstable #
6 nm, is very consistent with experimental observations.35

Liposomes (also with d # 3 nm) lack any membrane sugars or

proteins, and therefore do not form stable pores in general.14

The closest analogy to purely lipid systems has been reported

by Brochard-Wyart and coworkers,42 in which the addition of

‘‘edge-actant’’ agents preferentially partition at the pore edge

and reduce the line tension.

Other approaches to related problems include the frame-

work of Daoud and Cotton for star polymers, in which the

brush free energy is determined from scaling arguments based

on the geometry of the packed brush.43 The radial density

profile within the pore is similar to that of a star polymer

(without the constraint of a central junction). While others44

have shown that the direction of the curvature may be

important (i.e., inward vs. outward) for the overall chain

energy, the opposing curvatures seen here lead us to anticipate

qualitatively similar results with the above calculations. It is,

however, important to note that since the pore size is of the

same order as the thickness, i.e. Rstable y d, the two curvatures

of the ‘‘hemi-torus’’ that make up the pore are therefore also of

the same, but opposite, order. Therefore any attempt at using

models in which the two curvatures are decoupled must be

made with great trepidation. Self-consistent field theory

Fig. 5 Prediction of stable pore size in theoretical systems. (A) Energy landscapes for a ‘‘hairy’’ pore, Etot, for a theoretical membrane of d = 3 nm

(SOPC-like) with variations in brush thickness. As the brush gets thicker, the minimum shifts to the right of the graph, and, above a critical value,

the minimum ceases to exist. The minimum can never be greater than the value of the relative maximum, R*. (B) With the upper boundary, R*, and

the lower boundary Rf, there is only a small range of values of L0 that can stabilize a pore. Using the same system from (A) (i.e. a typical red cell),

we arrive at values for the lower and upper boundary of L0 that can stabilize the membrane pore, 7–18 nm, precisely the reported size of an

erythrocyte glycocalyx.37
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approaches to pores in polymer bilayers by Netz and Schick

have been predicted by means of a phase transition from

lamellar to catenoid lamellar, with the pores in a hexagonal

array.45 However, this is difficult to confirm experimentally.

We re-emphasize that while our model is by no means exhau-

stive, it adequately describes the experimental phenomena.6

However, a thorough discussion of these pores is not

complete without a careful consideration of kinetically trapped

pores. Viscous effects of the large polymer molecules—a result

of chain entanglement—might delay the resealing of the pore.

Similar delayed responsiveness has been seen with micropipette

aspiration of vesicles of OB18 and OB19,3 with relaxation

times of the order of minutes. However, during aspiration, the

surface area that is disrupted is much larger than that during

pore formation: the number of molecules required to reseal a

pore of 5–10 nm in radius is comparatively tiny. While the

diffusion constant of OB19 has not yet been determined, the

diffusivity of an OB18 molecule is 0.0024 mm2 sec21, which is

several orders of magnitude slower than an SOPC molecule

(3.8 mm2 sec21) or even an OE7 chain (0.12 mm2 sec21), but still

sufficient to explore an area of several pores within seconds.22

Therefore while the entrapment of polymer chains that might

keep the pore open remains a possibility, the apparent long life

of the pores suggests that the pores are in true thermodynamic

equilibrium.

One obvious application of these systems is in drug delivery.

Practical delivery vehicles must address the often-opposing

requirements of container stability and controlled release.

With highly structured polymer-based vesicles, one has

flexibility in the choice of parameters by virtue of the synthetic

approach. Stability can be controlled by the interfacial

chemistry3 independently from the release kinetics, which

would be tunable through pore size. Further control could be

accomplished through chemical means such as covalent

crosslinking,2 or degradable polymers,10 or the use of worm-

like micelles or DNA entropically constrained within the

vesicle.11,33,40,46

Lastly, we return briefly to the relevance of these calcula-

tions to the nuclear pore complex or NPC (Fig. 1). The dense

brush of flexible chains of the nucleoproteins that are

postulated to regulate transport into and out of the NPC1

are shown here to exert an osmotic force on the pore that

counteracts the association energy of the many proteins

that assemble into the making the NPC. While the NPC is

one of the largest and most complex protein assemblies in

the eukaryotic cell, rivaling the ribosome,38 the cohesive

stability of the NPC has yet to be understood. Perhaps

mutants in some of the proteins destabilize the NPC against

such stresses and lead to disease, or perhaps cellular invaders

such as viruses have a similar effect. Deeper insights could

also—as speculated at the outset—lead to regulated synthetic

pores as functional as the NPC.

4. Conclusion

The long-lasting pores seen in membranes with thick brushes

may be a result of steric stabilization of the hole by the PEG

chains. Using a simple model that includes the energy of the

PEG brush, we show that such stabilization is possible, and the

predicted size of the pores is in good agreement with previous

experiments. Furthermore, for stabilization to occur, the brush

can only be within a narrow range of thicknesses, also in

agreement with experimental observations. Intriguingly, this

model can also successfully predict glycocalyx thickness and

pore sizes observed in erythrocyte membranes. Although the

concept and application of polymers to sterically stabilize

systems is well established, few examples naturally exhibit such

mechanisms. Polymeric self-assemblies are therefore ideally

suited for responsive materials that have inherent capabilities

to either disassemble or change microstructure depending on

local conditions. Biology provides notable examples, such as

the combination of unstructured and structured protein

elements together in assemblies that include nuclear pores,

porated cell membranes, and also intermediate filaments.47

Future directions in materials science will clearly exploit these,

and other, mechanisms.48
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